discrete lattices
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 5)

H-INDEX

15
(FIVE YEARS 0)

2019 ◽  
Vol 19 (03) ◽  
pp. 1950024
Author(s):  
Xing Huang ◽  
Li-Xia Liu ◽  
Shao-Qin Zhang

By using the Malliavin calculus, the Driver-type integration by parts formula is established for the semigroup associated to SPDEs with Multiplicative Noise. Moreover, estimates on the logarithmic derivative of the transition probability measure are obtained. A concrete example to describe evolution of spin systems on discrete lattices is given to illustrate our main result.


2018 ◽  
Vol 32 (09) ◽  
pp. 1850107 ◽  
Author(s):  
Rong-Xuan Zhong ◽  
Nan Huang ◽  
Huang-Wu Li ◽  
He-Xiang He ◽  
Jian-Tao Lü ◽  
...  

We numerically and analytically investigate the formations and features of two-dimensional discrete Bose–Einstein condensate solitons, which are constructed by quadrupole–quadrupole interactional particles trapped in the tunable anisotropic discrete optical lattices. The square optical lattices in the model can be formed by two pairs of interfering plane waves with different intensities. Two hopping rates of the particles in the orthogonal directions are different, which gives rise to a linear anisotropic system. We find that if all of the pairs of dipole and anti-dipole are perpendicular to the lattice panel and the line connecting the dipole and anti-dipole which compose the quadrupole is parallel to horizontal direction, both the linear anisotropy and the nonlocal nonlinear one can strongly influence the formations of the solitons. There exist three patterns of stable solitons, namely horizontal elongation quasi-one-dimensional discrete solitons, disk-shape isotropic pattern solitons and vertical elongation quasi-continuous solitons. We systematically demonstrate the relationships of chemical potential, size and shape of the soliton with its total norm and vertical hopping rate and analytically reveal the linear dispersion relation for quasi-one-dimensional discrete solitons.


2016 ◽  
Vol 45 (3/4) ◽  
Author(s):  
Marcin Łazarz

In the paper we investigate Birkhoff’s conditions (Bi) and (Bi*). We prove that a discrete lattice L satisfies the condition (Bi) (the condition (Bi*)) if and only if L is a 4-cell lattice not containing a cover-preserving sublattice isomorphic to the lattice S*7 (the lattice S7). As a corollary we obtain a well known result of J. Jakub´ık from [6]. Furthermore, lattices S7 and S*7 are considered as so-called partially cover-preserving sublattices of a given lattice L, S7 ≪ L and S7 ≪ L, in symbols. It is shown that an upper continuous lattice L satisfies (Bi*) if and only if L is a 4-cell lattice such that S7 ≪/ L. The final corollary is a generalization of Jakubík’s theorem for upper continuous and strongly atomic lattices. Keywords: Birkhoff’s conditions, semimodularity conditions, modular lattice, discrete lattices, upper continuous lattice, strongly atomic lattice, cover-preserving sublattice, cell, 4-cell lattice.  


Author(s):  
Mariana M. Odashima ◽  
Beatriz G. Prado ◽  
E. Vernek

The Green's function method has applications in several fields in Physics, from classical differential equations to quantum many-body problems. In the quantum context, Green's functions are correlation functions, from which it is possible to extract information from the system under study, such as the density of states, relaxation times and response functions. Despite its power and versatility, it is known as a laborious and sometimes cumbersome method. Here we introduce the equilibrium Green's functions and the equation-of-motion technique, exemplifying the method in discrete lattices of non-interacting electrons. We start with simple models, such as the two-site molecule, the infinite and semi-infinite one-dimensional chains, and the two-dimensional ladder. Numerical implementations are developed via the recursive Green's function, implemented in Julia, an open-source, efficient and easy-to-learn scientific language. We also present a new variation of the surface recursive Green's function method, which can be of interest when simulating simultaneously the properties of surface and bulk.


2016 ◽  
Vol 94 (5) ◽  
Author(s):  
A. V. Yulin ◽  
I. Yu. Chestnov ◽  
X. Ma ◽  
S. Schumacher ◽  
U. Peschel ◽  
...  

2016 ◽  
Vol 93 (5) ◽  
Author(s):  
Huaiyu Chen ◽  
Yan Liu ◽  
Qiang Zhang ◽  
Yuhan Shi ◽  
Wei Pang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document