scholarly journals Rapid in vitro Regeneration and Clonal Propagation of the Fastest Growing Leguminous Tree Albizia falcataria (L.) Fosberg using Leaflet Explant

2010 ◽  
Vol 20 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Nabarun Ghosh ◽  
Don W. Smith ◽  
A. B. Das ◽  
A. Chatterjee

Young leaflets were used as the explants for in vitro regeneration of Albizia falcataria (L.) Fosberg without callus intervention. The leaf explants produced in vitro adventitious shoot buds directly on culturing with MS supplemented with BA, IBA (4.0/0.05 mg/l) and 10% coconut milk (v/v). Addition of casein hydrolysate and coconut milk increased the production of shoot buds. The buds produced shoots and roots and showed 66% survival in a field trial. This technique offers an effective way by which large number of genetically stable plants can be produced, maintained, multiplied and transported as disease free propagules or regenerants, safely and economically. Key words: Albizia falcataria, Leaf explant, Clonal propagation, Cytology D.O.I. 10.3329/ptcb.v20i1.5966 Plant Tissue Cult. & Biotech. 20(1): 63-72, 2010 (June)

2020 ◽  
Vol 30 (1) ◽  
pp. 131-141
Author(s):  
Hundessa Fufa ◽  
Jiregna Daksa

The present study was undertaken to establish a protocol for in vitro callusing of three Jatropha accessions, namely Metema, Adami Tulu and Shewa Robit from leaf explants. The medium supplemented with combination of 4.44 μM BAP and 4.52 μM 2,4-D resulted in maximum percentage of callus (100%) formed for all accessions. The maximum shoot regeneration (66.67%) from callus with 10.13 number of shoot was obtained from Shewa Robit in MS medum fortified with TDZ (2.27 μM ) and IBA (0.49 μM ). The presence of TDZ in the shoot regeneration medium has greater influence on the induction of adventitious shoot buds, whereas MS supplemented with BAP alone and combination with IBA did not induce shoot regeneration from callus culture. The results obtained in the present study would facilitate the high callus induction and regeneration responses in Jatropha for its improvement using biotechnological tools. Plant Tissue Cult. & Biotech. 30(1): 131-141, 2020 (June)


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 755
Author(s):  
Angela Ricci ◽  
Luca Capriotti ◽  
Bruno Mezzetti ◽  
Oriano Navacchi ◽  
Silvia Sabbadini

In the present study, an efficient system for the in vitro regeneration of adventitious shoots from the peach rootstock Hansen 536 leaves has been established. Twenty regeneration media containing McCown Woody Plant Medium (WPM) as a basal salt supplemented with different concentrations and combinations of plant growth regulators (PGRs) were tested. Expanded leaves along with their petiole from 3-week-old elongated in vitro shoot cultures were used as starting explants. The highest regeneration rate (up to 53%) was obtained on WPM basal medium enriched with 15.5 μM N6-benzylaminopurine (BAP). The influences on leaf regeneration of the ethylene inhibitor silver thiosulphate (STS) and of different combinations of antibiotics added to the optimized regeneration medium were also investigated. The use of 10 μM STS or carbenicillin (238 μM) combined with cefotaxime (210 μM) significantly increased the average number of regenerating shoots per leaf compared to the control. In vitro shoots were finally elongated, rooted and successfully acclimatized in the greenhouse. The results achieved in this study advances the knowledge on factors affecting leaf organogenesis in Prunus spp., and the regeneration protocol described looks promising for the optimization of new genetic transformation procedures in Hansen 536 and other peach rootstocks and cultivars.


1995 ◽  
Vol 43 (3) ◽  
pp. 259-262 ◽  
Author(s):  
K. Kathiravan ◽  
A. Shajahan ◽  
A. Ganapathi

Plantlets were regenerated from hypocotyl callus of Morus alba cv. MR2. Calli were established from hypocotyl segments on Murashige and Skoog (MS) medium supplemented with indoleacetic acid (0.5 mg/1) and benzyladenine (BA) (0.5 mg/1). They were transferred to MS medium with different concentrations of naphthaleneacetic acid NAA and BA for four weeks. Adventitious shoot buds were observed by transferring callus onto fresh Linsmaier and Skoog (LS) medium containing NAA (0.5 mg/1) and BA (0.75 mg/1). Shoots produced in vitro were rooted on MS medium with indolebutyric acid (0.75 mg/1).


2015 ◽  
Vol 25 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Kee Hwa Bae ◽  
Eui Soo Yoon

Lychnis cognate Maxim and Lychnis fulgens Fish. Ex Spreng are two valued ornamental plants in Korea. Soaking of seeds in GA3 solution remarkably promoted germination up to 60%, but the control (0 mg/l) was not effective (> 5%). To select an adequate temperature for seed germination, seeds, previously soaked in a 1000 mg/l GA3 for 24 hrs, were incubated at 15, 20, 25, and 30°C. Seed germination of over 20% was obtained at 15, 20, and 25°C, but only 10% at 30°C. These results indicate that the seeds of L. cognate and L. fulgens are in a such dormant state that they hardly germinate even by dormancy breaker (GA3) and low (15 ? 25°C) temperature treatment. The highest callus induction was observed in the leaf explants of the seedlings on MS containing specific concentrations of 3.0 mg/l BA and 1.0 mg/l NAA. The adventitious shoot was formed < 90% of calli on 1/2 WPM medium. The height of in vitro propagated plantlet was no different media used for regeneration. This in vitro propagation protocol should be useful for conservation of endangered and ornamental plant.Plant Tissue Cult. & Biotech. 25(1): 1-12, 2015 (June)


2017 ◽  
Vol 4 (2) ◽  
pp. 52-56
Author(s):  
Mallika Devi T

In the present study the protocol for callus induction and regeneration in Azima tetracantha has been developed in culture medium. The young apical leaf explants were used for callus induction on MS medium containing BAP and NAA at 1.0 and 0.4mgl-1 respectively showed maximum callus induction (73%). The amount of callus responded for shoot formation (74%) was obtained in the MS medium containing BAP (1.5 mgl-1) and NAA (0.3mgl-1).The elongated shoots were rooted on half strength medium supplemented with IBA (1.5 mgl-1) and Kn (0.4 mgl-1) for shoots rooted. Regenerated plantlets were successfully acclimatized and hardened off inside the culture and then transferred to green house with better survival rate.


2021 ◽  
Vol 883 (1) ◽  
pp. 012075
Author(s):  
R Purnamaningsih ◽  
D Sukmadjaja ◽  
S Suhesti ◽  
S Rahayu

Abstract Six mutant clones of sugarcane with high productivity have been produced through tissue culture techniques combined with mutations using gamma-ray irradiation and Ethyl Methane Sulfonate. The six mutant clones have been tested for stability in the field. They are proven to have high productivity and yields, so that they are very potential to be developed as superior varieties. To support the planting material sufficiency of these clones, an efficient propagation method was needed. Media formulations with different physical properties and composition of growth regulators were tested to obtain high seedling propagation rates. The media formulation for callus induction was Murashige dan Skoog (MS) + 3 mg/l 2,4-D + 3 g/l casein hydrolysate + 3% sucrose and for shoot regeneration was MS + 0,5 mg/l BA + 0,1 mg/l IBA + 100 mg/l PVP and 2% sucrose. Shoot proliferation was carried out on MS liquid (1, ½) + (0.3; 0.5 mg/l) BA + 0.1 mg/l IBA + 1 mg/l Kinetin + (0; 0.5 mg/l) GA3+ sucrose 2%. The results showed that callus induction, callus regeneration, and shoot proliferation of sugarcane mutant clones were influenced by the genotype and medium composition. The fastest callus induction was obtained from the MSP-4 clone (5.82 days), and the longest was MSB-7 (8.82 days). The largest callus diameter was obtained from MSB-6 clone on MS medium containing 1 mg/l BA, 100 mg/l PVP, and 2% sucrose. The highest number of shoots was obtained from the MSB-6 clone, while the least number of shoots conducted from the MSB-8 clone. The MSB-8 clones were more difficult to regenerate compared to the others. The best media formulation for shoot proliferation was ½ MS containing 0.5 mg/l BA, 1 mg/l Kinetin, and 0.1 mg/l IBA, while the best formulation for rooting was ½ MS.


1970 ◽  
Vol 18 (2) ◽  
pp. 173-179 ◽  
Author(s):  
T. Mallikadevi ◽  
P. Senthilkumar ◽  
S. Paulsamy

The in vitro regeneration of Plubago zeylanica exhibited that the callus was initiated in the basal medium containing BAP, NAA, 2, 4-D, and IBA.  The high amount (90%) of organic calli was induced in the basal medium supplemented with 2, 4-D, alone at 2.0 mg/l. In the subculture the adventitious shoot formation was prominently higher (83%) in the basal medium containing BAP, and NAA at 3.5 and 0.3 mg/l, respectively. IAA (1.0 mg/l)effectively produced higher percen-tage (90) of roots and root growth. After sequential hardening, survivability rate was observed to be significantly higher (80%) in the hardening medium containing garden soil, sand and vermicompost in the ratio of 1 : 1 : 1 by volume under greenhouse condition.  Key words: Plumbago zeylanica, In vitro regeneration, Medicinal plant D.O.I. 10.3329/ptcb.v18i2.3648 Plant Tissue Cult. & Biotech. 18(2): 173-179, 2008 (December)


2018 ◽  
Vol 53 (2) ◽  
pp. 133-138 ◽  
Author(s):  
S Khan ◽  
TA Banu ◽  
S Akter ◽  
B Goswami ◽  
M Islam ◽  
...  

An efficient in vitro regeneration system was developed for Rauvolfia serpentina L. through direct and indirect organogenesis from nodal and leaf explants. Among the different growth regulators, MS medium supplemented with 2.0 mg/l BAP, 0.5mg/l IAA and 0.02mg/l NAA found best for the multiple shoot formation from nodal segments. In this combination 98% explants produced multiple shoots and the average number of shoots per explants is 13∙4. The frequency of callus induction and multiple shoot induction from leaves was highest 88% in MS medium supplemented with 2.0 mg/l BAP, where mean number of shoots/explants was 12.5. The highest frequency of root induction (80%) and mean number of roots/plantlets (10) were obtained on half strength of MS medium containing 0.2 mg/l IBA. The rooted plantlets were transferred for hardening following acclimatization and finally were successfully established in the field.Bangladesh J. Sci. Ind. Res.53(2), 133-138, 2018


2019 ◽  
Vol 43 ◽  
Author(s):  
Olga Vladimirovna Mitrofanova ◽  
Irina Vjacheslavovna Mitrofanova ◽  
Tatyana Nikolaevna Kuzmina ◽  
Nina Pavlovna Lesnikova-Sedoshenko ◽  
Sergey Vladimirovich Dolgov

ABSTRACT Apricot is one of the most valuable commercial fruits. In vitro propagation of apricot is very important for rapid multiplication of cultivars with desirable traits and production of cleaning up and virus-free plants. Low frequency of multiplication is the main limiting factor for traditional propagation methods. In this regard, the objective of our investigation was to study the morphogenetic capacity of apricot leaf explants of the promising cultivars ‘Iskorka Tavridy’, ‘Magister’ and ‘Bergeron’ for regeneration system development and solving some breeding questions. The source of explants was in vitro plants regenerated and cultured on QL medium. Leaves were maintained in the dark at 24±1 °C in thermostat for three-four weeks. Morphogenic callus and structures were mainly formed at the central and proximal parts of leaves on MS, QL and WPM media with 1.5 or 2.0 mg L-1 BAP and 1.5 or 2.0 mg L-1 IAA in different combinations, or TDZ (0.6 and 1.3 mg L-1). Callus with adventive buds was transferred to regeneration medium and placed into a growth chamber at 24±1 °C and 16-hour photoperiod with a light intensity of 37.5 μmol m-2 s-1. The best results were obtained when adaxial leaf surface was in contact with the culture medium. Frequency of leaf callus formation on MS medium with 1.5 mg L-1 BAP and 1.5 mg L-1 IAA was higher in the explants of ‘Iskorka Tavridy’ (80.0%) than in - ‘Bergeron’ (50.0%) and ‘Magister’ (36.7%). The best results of callogenesis for ‘Magister’ was obtained on MS medium with 1.3 mg L-1 TDZ (53.3%). Active microshoot regeneration in ‘Iskorka Tavridy’ cultivar was shown on MS medium with BAP and IAA and in ‘Magister’ cultivar - on MS medium with TDZ. Rhizogenesis was obtained on half strength MS medium with 2.0 mg L-1 IBA.


1970 ◽  
Vol 19 (1) ◽  
pp. 101-111 ◽  
Author(s):  
Rakha Hari Sarker ◽  
Khaleda Islam ◽  
M.I. Hoque

Agrobacterium-mediated genetic transformation system has been developed for two tomato (Lycopersicon esculentum Mill.) varieties, namely Pusa Ruby (PR) and BARI Tomato-3 (BT-3). Prior to the establishment of transformation protocol cotyledonary leaf explants from the two varieties were cultured to obtain genotype independent in vitro regeneration. Healthy multiple shoot regeneration was obtained from the cut ends of cotyledonary leaf segments for both the varieties on MS containing 1.0 mg/l BAP and 0.1 mg/l IAA. The maximum root induction from the regenerated shoots was achieved on half the strength of MS medium supplemented with 0.2 mg/l IAA. The in vitro grown plantlets were successfully transplanted into soil where they flowered and produced fruits identical to those developed by control plants. Transformation ability of cotyledonary leaf explants was tested with Agrobacterium tumefaciens strain LBA4404 harboring binary plasmid pBI121, containing GUS and npt II genes. Transformed cotyledonary leaf explants were found to produce multiple shoots on MS containing 1.0 mg/l BAP and 0.1 mg/l IAA. Selection of the transformed shoots was carried out by gradually increasing the concentration of kanamycin to 200 mg/l since kanamycin resistant gene was used for transformation experiments. Shoots that survived under selection pressure were subjected to rooting. Transformed rooted plantlets were transferred to soil. Stable expression of GUS gene was detected in the various tissues from putatively transformed plantlets using GUS histochemical assay.  Key words: In vitro regeneration, transformation, tomato D.O.I. 10.3329/ptcb.v19i1.5004 Plant Tissue Cult. & Biotech. 19(1): 101-111, 2009 (June)


Sign in / Sign up

Export Citation Format

Share Document