scholarly journals Creutzfeldt-Jakob disease surveillance in Australia: update to 31 December 2018

Author(s):  
Christine Stehmann ◽  
Matteo Senesi ◽  
Victoria Lewis ◽  
Mairin Ummi ◽  
Marion Simpson ◽  
...  

Nationwide surveillance of human prion diseases (also known as transmissible spongiform encephalopathies), the most common being Creutzfeldt-Jakob disease (CJD), is performed by the Australian National Creutzfeldt-Jakob Disease Registry (ANCJDR), based at the University of Melbourne. National surveillance encompasses the period since 1 January 1970, with prospective surveillance occurring from 1 October 1993. Over this prospective surveillance period considerable developments have occurred in relation to pre-mortem diagnostics, the delineation of new disease subtypes and a heightened awareness of prion diseases in health care settings. Surveillance practices of the ANCJDR have evolved and adapted accordingly. This report summarises the activities of the ANCJDR from 1 January to 31 December 2018. Since the ANCJDR began offering diagnostic cerebrospinal fluid (CSF) 14-3-3 protein testing in Australia in September 1997, the annual number of referrals has steadily increased. In 2018, 465 domestic CSF specimens were referred for 14-3-3 protein testing and 78 persons with suspected human prion disease were formally added to the national register. The majority of the 78 suspect case notifications remain as of 31 December 2018 classified as “incomplete” (42 cases), while eleven cases were excluded by either detailed clinical follow-up (one case) or neuropathological examination (ten cases); 15 cases were classified as “definite” and ten as “probable” prion disease. Sixty-two percent of all suspected human prion disease related deaths underwent neuropathological examination. No cases of variant CJD were confirmed.

Author(s):  
Christiane Stehmann ◽  
Shannon Sarros ◽  
Matteo Senesi ◽  
Victoria Lewis ◽  
Marion Simpson ◽  
...  

Nationwide surveillance of human prion diseases (also known as transmissible spongiform encephalopathies), the most common being Creutzfeldt–Jakob disease (CJD), is performed by the Australian National Creutzfeldt–Jakob Disease Registry (ANCJDR), based at the University of Melbourne. National surveillance encompasses the period since 1970, with prospective surveillance occurring from 1993 onwards. Over this prospective surveillance period considerable developments have occurred, especially in relation to pre-mortem diagnostics, the delineation of new disease subtypes and a heightened awareness of prion diseases in the health care setting. The surveillance practices of the ANCJDR have evolved and adapted accordingly. Since the ANCJDR began offering cerebrospinal fluid (CSF) 14-3-3 protein testing in Australia in September 1997, the annual number of referrals has steadily increased to a maximum of 508 in 2017. The number of CSF test referrals in 2017 represents a 20% increase compared to that of 2016. In 2017, there was an overall stabilisation of the annual incidence rate of confirmed prion disease in Australia at expected levels; 72 persons with suspected human prion disease were added to the national register, with 72% of all suspected CJD cases undergoing neuropathological examination. The majority of the 72 suspected cases added to the register are as of 31 December 2017 still classified as “incomplete” (47 cases), while four cases were excluded by either detailed clinical follow-up (1 case) or neuropathological examination (3 cases); 19 cases were classified as definite and two as probable prion disease. No cases of variant CJD (vCJD) were confirmed.


2021 ◽  
Vol 45 ◽  
Author(s):  
Christiane Stehmann ◽  
Matteo Senesi ◽  
Shannon Sarros ◽  
Amelia McGlade ◽  
Victoria Lewis ◽  
...  

Nationwide surveillance of Creutzfeldt-Jakob disease and other human prion diseases is performed by the Australian National Creutzfeldt-Jakob Disease Registry (ANCJDR). National surveillance encompasses the period since 1 January 1970, with prospective surveillance occurring from 1 October 1993. Over this prospective surveillance period, considerable developments have occurred in pre-mortem diagnostics; in the delineation of new disease subtypes; and in a heightened awareness of prion diseases in healthcare settings. Surveillance practices of the ANCJDR have evolved and adapted accordingly. This report summarises the activities of the ANCJDR during 2020. Since the ANCJDR began offering diagnostic cerebrospinal fluid (CSF) 14-3-3 protein testing in Australia in September 1997, the annual number of referrals has steadily increased. In 2020, 510 domestic CSF specimens were referred for 14-3-3 protein testing and 85 persons with suspected human prion disease were formally added to the national register. As of 31 December 2020, just over half (44 cases) of the 85 suspect case notifications remain classified as ‘incomplete’; 12 cases were excluded through either detailed clinical follow-up (8 cases) or neuropathological examination (4 cases); 18 cases were classified as ‘definite’ and eleven as ‘probable’ prion disease. For 2020, sixty percent of all suspected human-prion-disease-related deaths in Australia underwent neuropathological examination. No cases of variant or iatrogenic CJD were identified. The SARS-CoV-2 pandemic did not affect prion disease surveillance outcomes in Australia.


2021 ◽  
Vol 45 ◽  
Author(s):  
Christiane Stehmann ◽  
Matteo Senesi ◽  
Shannon Sarros ◽  
Amelia McGlade ◽  
Victoria Lewis ◽  
...  

Nationwide surveillance of Creutzfeldt-Jakob disease and other human prion diseases is performed by the Australian National Creutzfeldt-Jakob Disease Registry (ANCJDR). National surveillance encompasses the period since 1 January 1970, with prospective surveillance occurring from 1 October 1993. Over this prospective surveillance period, considerable developments have occurred in pre-mortem diagnostics; in the delineation of new disease subtypes; and in a heightened awareness of prion diseases in healthcare settings. Surveillance practices of the ANCJDR have evolved and adapted accordingly. This report summarises the activities of the ANCJDR during 2020. Since the ANCJDR began offering diagnostic cerebrospinal fluid (CSF) 14-3-3 protein testing in Australia in September 1997, the annual number of referrals has steadily increased. In 2020, 510 domestic CSF specimens were referred for 14-3-3 protein testing and 85 persons with suspected human prion disease were formally added to the national register. As of 31 December 2020, just over half (44 cases) of the 85 suspect case notifications remain classified as ‘incomplete’; 27 cases were excluded through either detailed clinical follow-up (9 cases) or neuropathological examination (18 cases); 18 cases were classified as ‘definite’ and eleven as ‘probable’ prion disease. For 2020, sixty percent of all suspected human-prion-disease-related deaths in Australia underwent neuropathological examination. No cases of variant or iatrogenic CJD were identified. The SARS-CoV-2 pandemic did not affect prion disease surveillance outcomes in Australia.


2020 ◽  
Vol 44 ◽  
Author(s):  
Christiane Stehmann ◽  
Matteo Senesi ◽  
Shannon Sarros ◽  
Amelia McGlade ◽  
Marion Simpson ◽  
...  

Nationwide surveillance of Creutzfeldt-Jakob disease and other human prion diseases is performed by the Australian National Creutzfeldt-Jakob Disease Registry (ANCJDR). National surveillance encompasses the period since 1 January 1970, with prospective surveillance occurring from 1 October 1993. Over this prospective surveillance period, considerable developments have occurred in pre-mortem diagnostics; in the delineation of new disease subtypes; and in a heightened awareness of prion diseases in healthcare settings. Surveillance practices of the ANCJDR have evolved and adapted accordingly. This report summarises the activities of the ANCJDR during 2019. Since the ANCJDR began offering diagnostic cerebrospinal fluid (CSF) 14-3-3 protein testing in Australia in September 1997, the annual number of referrals has steadily increased. In 2019, 513 domestic CSF specimens were referred for 14-3-3 protein testing and 85 persons with suspected human prion disease were formally added to the national register. As of 31 December 2019, just under half (42 cases) of the 85 suspect case notifications remain classified as ‘incomplete’; 16 cases were excluded through either detailed clinical follow-up (3 cases) or neuropathological examination (13 cases); 20 cases were classified as ‘definite’ and seven as ‘probable’ prion disease. For 2019, sixty-three percent of all suspected human prion disease related deaths in Australia underwent neuropathological examination. No cases of variant or iatrogenic CJD were identified. Two possibly causal novel prion protein gene (PRNP) sequence variations were identified. Keywords: Creutzfeldt-Jakob disease, prion disease, transmissible spongiform encephalopathy, disease surveillance


2020 ◽  
pp. 6109-6119
Author(s):  
Simon Mead ◽  
R.G. Will

Prion protein (for proteinacious infectious particle) is a membrane-associated glycoprotein present in all mammalian species. Its normal function is unknown, but in prion diseases (also known as transmissible spongiform encephalopathies) a misfolded polymer form of the protein, partially resistant to protease digestion, is deposited in the brain and associated—typically after long incubation periods—with neuronal dysfunction and death. Prion diseases have become the subject of intense scientific and public interest because they are caused by a biologically distinct disease mechanism and because of the implications for public health following the identification of a new human prion disease, variant Creutzfeldt–Jakob disease (vCJD), and the evidence that it is caused by the transmission to humans of a cattle prion disease, bovine spongiform encephalopathy (BSE).


mBio ◽  
2011 ◽  
Vol 2 (3) ◽  
Author(s):  
Christina D. Orrú ◽  
Jason M. Wilham ◽  
Lynne D. Raymond ◽  
Franziska Kuhn ◽  
Björn Schroeder ◽  
...  

ABSTRACT A key challenge in managing transmissible spongiform encephalopathies (TSEs) or prion diseases in medicine, agriculture, and wildlife biology is the development of practical tests for prions that are at or below infectious levels. Of particular interest are tests capable of detecting prions in blood components such as plasma, but blood typically has extremely low prion concentrations and contains inhibitors of the most sensitive prion tests. One of the latter tests is quaking-induced conversion (QuIC), which can be as sensitive as in vivo bioassays, but much more rapid, higher throughput, and less expensive. Now we have integrated antibody 15B3-based immunoprecipitation with QuIC reactions to increase sensitivity and isolate prions from inhibitors such as those in plasma samples. Coupling of immunoprecipitation and an improved real-time QuIC reaction dramatically enhanced detection of variant Creutzfeldt-Jakob disease (vCJD) brain tissue diluted into human plasma. Dilutions of 1014-fold, containing ~2 attogram (ag) per ml of proteinase K-resistant prion protein, were readily detected, indicating ~10,000-fold greater sensitivity for vCJD brain than has previously been reported. We also discriminated between plasma and serum samples from scrapie-infected and uninfected hamsters, even in early preclinical stages. This combined assay, which we call “enhanced QuIC” (eQuIC), markedly improves prospects for routine detection of low levels of prions in tissues, fluids, or environmental samples. IMPORTANCE Transmissible spongiform encephalopathies (TSEs) are largely untreatable and are difficult to diagnose definitively prior to irreversible clinical decline or death. The transmissibility of TSEs within and between species highlights the need for practical tests for even the smallest amounts of infectivity. A few sufficiently sensitive in vitro methods have been reported, but most have major limitations that would preclude their use in routine diagnostic or screening applications. Our new assay improves the outlook for such critical applications. We focused initially on blood plasma because a practical blood test for prions would be especially valuable for TSE diagnostics and risk reduction. Variant Creutzfeldt-Jakob disease (vCJD) in particular has been transmitted between humans via blood transfusions. Enhanced real-time quaking-induced conversion (eRTQ) provides by far the most sensitive detection of vCJD to date. The 15B3 antibody binds prions of multiple species, suggesting that our assay may be useful for clinical and fundamental studies of a variety of TSEs of humans and animals.


Author(s):  
Patrick JM Urwin ◽  
Anna M Molesworth

Human prion diseases comprise a number of rare and fatal neurodegenerative conditions that result from the accumulation in the central nervous system of an abnormal form of a naturally occurring protein, called the prion protein. The diseases occur in genetic, sporadic, and acquired forms: genetic disease is associated with mutations in the prion protein gene (PRNP); sporadic disease is thought to result from a spontaneous protein misfolding event; acquired disease results from transmission of infection from an animal or another human. The potential transmissibility of the prion in any of these forms, either in disease states or during the incubation period, has implications for public health. Here we focus on Creutzfeldt-Jakob Disease (CJD), including variant Creutzfeldt-Jakob Disease (vCJD), although we will also discuss other forms of human prion disease.


Author(s):  
Richard Knight

Prion diseases (also known as transmissible spongiform encephalopathies (TSEs)) affect animals and humans, although only the human diseases will be discussed in this chapter. Despite TSEs having somewhat disparate causes and effects, there are unifying features: TSEs are brain diseases with neurodegenerative pathology, which is typically associated with spongiform change, and, most characteristically, there is tissue deposition of an abnormal structural form of the prion protein. Some of the TSEs are naturally acquired infections and, while others are not, they are potentially transmissible in certain circumstances.


2002 ◽  
Vol 30 (4) ◽  
pp. 742-745 ◽  
Author(s):  
D. R. Brown

Transmissible spongiform encephalopathies are diseases of animals and humans that are also termed prion diseases. These diseases are linked together because a normal brain glycoprotein termed the prion protein is converted to a readily detectable protease-resistant isoform. There is now strong evidence to suggest that apart from this difference in resistance a major difference between the isoforms is that the normal prion protein binds copper and has an anti-oxidant function. Brains from Creutzfeldt-Jakob disease patients and brains from mice with experimental mouse scrapie have been shown to have changes in the levels of both copper and manganese. There is growing evidence that links prion diseases to disturbances of metal metabolism.


2005 ◽  
Vol 4 (10) ◽  
pp. 273-278
Author(s):  
Steve Dealler

Steve Dealler is a medical microbiologist with Morecambe Bay Hospitals NHS Trust. His work on on the diagnosis, epidemiology and potential treatment of transmissible spongiform encephalopathies has brought him inter-national recognition. He has been at the forefront of work on the epidemiology of human food containing the vector for bovine spongiform encephalopathy (BSE), and the development of prophylaxis against variant Creutzfeldt-Jakob disease (vCJD). He is currently working on a potential treatment, pentosan polysulphate. Here he describes the current state of knowledge in the battle against this devastating disease and the political inertia that frustrated earlier attempts to prevent the epidemic.


Sign in / Sign up

Export Citation Format

Share Document