protein misfolding
Recently Published Documents


TOTAL DOCUMENTS

1271
(FIVE YEARS 410)

H-INDEX

83
(FIVE YEARS 14)

2022 ◽  
Vol 13 ◽  
pp. 12
Author(s):  
Amandeep Godara ◽  
Andy Y. Wang ◽  
Knarik Arkun ◽  
Teresa Fogaren ◽  
Adnan S. Qamar ◽  
...  

Background: Amyloidosis is a protein misfolding disorder that leads to the deposition of beta-pleated sheets of a fibrillar derivative of various protein precursors. Identification of the type of precursor protein is integral in treatment decision-making. The presence of two different types of amyloid in the same patient is unusually rare, and there are no previous reports of two different types of amyloid deposition in the ligamentum flavum (LF) in the same patient. Case Description: Here, we describe two patients with spinal stenosis who underwent laminectomies and were found to have AL and ATTR amyloid deposits in the LF. Conclusion: As the spine is becoming recognized as a site for ATTRwt amyloid deposition, patients undergoing spinal decompression surgery may potentially benefit from evaluation for amyloidosis in the LF.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262628
Author(s):  
Mauricio Torres ◽  
Karen Castillo ◽  
Ricardo Armisén ◽  
Andrés Stutzin ◽  
Claudio Soto ◽  
...  

2021 ◽  
Author(s):  
Janaranjani Murugesan ◽  
Ajithkumar Balakrishnan ◽  
Premkumar Kumpati ◽  
Hemamalini Vedagiri

Proteinuria is one of the hallmarks of preeclampsia (PE) that differentiates other hypertensive disorders of pregnancy. Protein misfolding and aggregation is an emerging pathological condition underlying many chronic metabolic diseases and neurodegenerative diseases. Recent studies indicate protein aggregation as an emerging biomarker of preeclampsia, wherein several proteins are aggregated and dysregulated in the body fluids of preeclamptic women, provoking the multi-systemic clinical manifestations of the disease. At the cellular level, these misfolded and aggregated proteins are potentially toxic interfering with the normal physiological process, eliciting the unfolded protein response (UPR) pathway activators in the endoplasmic reticulum (ER) that subsequently augments the ER quality control systems to remove these aberrant proteins. ER resident chaperones, folding enzymes and other proteins serve as part of the ER quality control machinery in restoring nascent protein folding. These ER chaperones are crucial for ER function aiding in native protein folding, maintaining calcium homeostasis, as sensors of ER stress and also as immune modulators. Consequently, ER chaperones seems to be involved in many cellular processes, yet the association is expanding to be explored. Understanding the role and mechanism of ER chaperones in regulating protein misfolding and aggregation would provide new avenues for therapeutic intervention as well as for the development of new diagnostic approaches.


2021 ◽  
pp. 1-14
Author(s):  
Stefanie A.G. Black ◽  
Anastasiia A. Stepanchuk ◽  
George W. Templeton ◽  
Yda Hernandez ◽  
Tomoko Ota ◽  
...  

Background: Toxic amyloid-β (Aβ) peptides aggregate into higher molecular weight assemblies and accumulate not only in the extracellular space, but also in the walls of blood vessels in the brain, increasing their permeability, and promoting immune cell migration and activation. Given the prominent role of the immune system, phagocytic blood cells may contact pathological brain materials. Objective: To develop a novel method for early Alzheimer’s disease (AD) detection, we used blood leukocytes, that could act as “sentinels” after trafficking through the brain microvasculature, to detect pathological amyloid by labelling with a conformationally-sensitive fluorescent amyloid probe and imaging with confocal spectral microscopy. Methods: Formalin-fixed peripheral blood mononuclear cells (PBMCs) from cognitively healthy control (HC) subjects, mild cognitive impairment (MCI) and AD patients were stained with the fluorescent amyloid probe K114, and imaged. Results were validated against cerebrospinal fluid (CSF) biomarkers and clinical diagnosis. Results: K114-labeled leukocytes exhibited distinctive fluorescent spectral signatures in MCI/AD subjects. Comparing subjects with single CSF biomarker-positive AD/MCI to negative controls, our technique yielded modest AUCs, which improved to the 0.90 range when only MCI subjects were included in order to measure performance in an early disease state. Combining CSF Aβ 42 and t-Tau metrics further improved the AUC to 0.93. Conclusion: Our method holds promise for sensitive detection of AD-related protein misfolding in circulating leukocytes, particularly in the early stages of disease.


2021 ◽  
Author(s):  
Mario K. Shammas ◽  
Xiaoping Huang ◽  
Beverly P. Wu ◽  
Insung Song ◽  
Nicholas Randolph ◽  
...  

Mitochondrial stress triggers a response in the cell's mitochondria and nucleus, but how these stress responses are coordinated in vivo is poorly understood. Here, we characterize a family with myopathy caused by a dominant p.G58R mutation in the mitochondrial protein CHCHD10. To understand the disease etiology, we developed a novel knock-in mouse model and found that mutant CHCHD10 aggregates in affected tissues, applying a toxic protein stress to the inner mitochondrial membrane. Unexpectedly, survival of CHCHD10 knock-in mice depended on a protective stress response mediated by OMA1. The OMA1 stress response acted both locally within mitochondria, inhibiting mitochondrial fusion, and signaled outside the mitochondria, activating the integrated stress response. We additionally identified an isoform switch in the terminal complex of the electron transport chain as a novel component of this response. Our results demonstrate that OMA1 is essential for neonatal survival conditionally in the setting of inner mitochondrial membrane stress, coordinating local and global stress responses to reshape the mitochondrial network and proteome.


2021 ◽  
Vol 9 ◽  
Author(s):  
E. Srinivasan ◽  
G. Chandrasekhar ◽  
P. Chandrasekar ◽  
K. Anbarasu ◽  
AS Vickram ◽  
...  

Protein misfolding occurs due to the loss of native protein structure and adopts an abnormal structure, wherein the misfolded proteins accumulate and form aggregates, which result in the formation of amyloid fibrils that are associated with neurodegenerative diseases. Amyloid beta (Aβ42) aggregation or amyloidosis is contemplated as a unique hallmark characteristic of Alzheimer’s disease (AD). Due to aberrant accrual and aggregation of Aβ42 in extracellular space, the formation of senile plaques is found in AD patients. These senile plaques occur usually in the cognitive and memory region of the brain, enfeebles neurodegeneration, hinders the signaling between synapse, and disrupts neuronal functioning. In recent years, herbal compounds are identified and characterized for their potential as Aβ42 inhibitors. Thus, understanding their structure and molecular mechanics can provide an incredible finding in AD therapeutics. To describe the structure-based molecular studies in the rational designing of drugs against amyloid fibrils, we examined various herbal compounds that belong to prenylflavonoids. The present study characterizes the trends we identified at molecular docking studies and dynamics simulation where we observed stronger binding orientation of bavachalcone, bavachin, and neobavaisoflavone with the amyloid-beta (Aβ42) fibril structure. Hence, we could postulate that these herbal compounds could be potential inhibitors of Aβ42 fibrils; these anti-aggregation agents need to be considered in treating AD.


2021 ◽  
Author(s):  
Pritam Mukherjee ◽  
Prajnadipta Panda ◽  
Prasad Kasturi

Proteome imbalance can lead to protein misfolding and aggregation which is associated with pathologies. Protein aggregation can also be an active, organized process and can be exploited by cells as a survival strategy. In adverse conditions, it is beneficial to deposit the proteins in a condensate rather degrading and resynthesizing. Membrane less organelles (MLOs) are biological condensates formed through liquid liquid phase separation (LLPS), involving cellular components such as nucleic acids and proteins. LLPS is a regulated process, which when perturbed, can undergo a transition from a physiological liquid condensate to pathological solid-like protein aggregates. To understand how the MLO-associated proteins (MLO-APs) behave during aging, we performed a comparative meta analysis with age related proteome of C. elegans. We found that the MLO-APs are highly abundant throughout the lifespan. Interestingly, they are aggregating more in long-lived mutant worms compared to the age matched wildtype worms. GO term analysis revealed that the cell cycle and embryonic development are among the top enriched processes in addition to RNA metabolism RNP components. Considering antagonistic pleotropic nature of these developmental genes and post mitotic status of C. elegans, we assume that these proteins phase transit during post development. As the organism ages, these MLO-APs either mature to become more insoluble or dissolve in uncontrolled manner. However, in the long-lived daf-2 mutant worms, the MLOs may attain protective states due to enhanced proteostasis components and altered metabolism that eventually make these worms more protected.


2021 ◽  
Author(s):  
Margarita Dinamarca ◽  
Laura Colombo ◽  
Urszula Brykczynska ◽  
Amandine Grimm ◽  
Natalia Tousiaki ◽  
...  

Abstract A potential explanation for the spatiotemporal accumulation of pathological lesions in the brain of patients with neurodegenerative protein misfolding diseases (PMDs) is cell-to-cell transmission of aggregation-prone, misfolded proteins. Little is known about central to peripheral transmission and its contribution to pathology. We show that transmission of Huntington’s disease- (HD-) associated mutant HTT exon 1 (mHTTEx1) occurs across the neuromuscular junctions in human iPSC cultures and in vivo in wild-type mice. We found that transmission is an active and dynamic process, that happens prior to aggregate formation and is regulated by synaptic activity. Furthermore, we find that transmitted mHTTEx1 causes HD-relevant pathology at a molecular and functional level in human muscle cells, even in the presence of ubiquitous expression mHTTEx1. With this work we uncover a casual-link between mHTTEx1 synaptic transmission and pathology, highlighting the therapeutic potential in blocking toxic protein transmission in PMDs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jorge A. de la Garza-García ◽  
Safia Ouahrani-Bettache ◽  
Sébastien Lyonnais ◽  
Erika Ornelas-Eusebio ◽  
Luca Freddi ◽  
...  

Brucellae are facultative intracellular coccobacilli causing brucellosis, one of the most widespread bacterial zoonosis affecting wildlife animals, livestock and humans. The genus Brucella comprises classical and atypical species, such as Brucella suis and Brucella microti, respectively. The latter is characterized by increased metabolic activity, fast growth rates, and extreme acid resistance at pH 2.5, suggesting an advantage for environmental survival. In addition, B. microti is more acid-tolerant than B. suis at the intermediate pH of 4.5. This acid-resistant phenotype of B. microti may have major implications for fitness in soil, food products and macrophages. Our study focused on the identification and characterization of acid resistance determinants of B. suis and B. microti in Gerhardt’s minimal medium at pH 4.5 and 7.0 for 20 min and 2 h by comparative RNA-Seq-based transcriptome analysis, validated by RT-qPCR. Results yielded a common core response in both species with a total of 150 differentially expressed genes, and acidic pH-dependent genes regulated specifically in each species. The identified core response mechanisms comprise proton neutralization or extrusion from the cytosol, participating in maintaining physiological intracellular pH values. Differential expression of 441 genes revealed species-specific mechanisms in B. microti with rapid physiological adaptation to acid stress, anticipating potential damage to cellular components and critical energy conditions. Acid stress-induced genes encoding cold shock protein CspA, pseudogene in B. suis, and stress protein Dps were associated with survival of B. microti at pH 4.5. B. suis response with 284 specifically regulated genes suggested increased acid stress-mediated protein misfolding or damaging, triggering the set-up of repair strategies countering the consequences rather than the origin of acid stress and leading to subsequent loss of viability. In conclusion, our work supports the hypothesis that increased acid stress resistance of B. microti is based on selective pressure for the maintenance of functionality of critical genes, and on specific differential gene expression, resulting in rapid adaptation.


2021 ◽  
Author(s):  
Olivia M Rifai ◽  
James Longden ◽  
Judi O'Shaughnessy ◽  
Michael DE Sewell ◽  
Karina McDade ◽  
...  

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are regarded as two ends of a pathogenetic spectrum, termed ALS-frontotemporal spectrum disorder (ALS-FTSD). However, it is currently difficult to predict where on the spectrum an individual will lie, especially for patients with C9orf72 hexanucleotide repeat expansions (HRE), a mutation associated with both ALS and FTD. It has been shown that both inflammation and protein misfolding influence aspects of ALS and ALS-FTSD disease pathogenesis, such as the manifestation or severity of motor or cognitive symptoms. Previous studies have highlighted markers which may influence C9orf72-associated disease presentation in a targeted fashion, though there has yet to be a systematic and quantitative assessment of common immunohistochemical markers to investigate the significance of these pathways in an unbiased manner. Here we report the first extensive digital pathological assessment with random forest modelling of pathological markers often used in neuropathology practice. This study profiles glial activation and protein misfolding in a cohort of deeply clinically profiled post-mortem tissue from patients with a C9orf72 HRE, who either met the criteria for a diagnosis of ALS or ALS-FTSD. We show that microglial immunohistochemical staining features, both morphological and spatial, are the best independent classifiers of disease status and that clinicopathological associations exist between microglial activation status and cognitive dysfunction in ALS-FTSD patients with C9orf72 HRE. Furthermore, we show that spatially resolved changes in FUS staining are also an accurate predictor of disease status, implying that liquid-liquid phase shift of this aggregation-prone RNA-binding protein may be important in ALS caused by a C9orf72 HRE. Our findings provide further support to the hypothesis of dysfunctional immune regulation and proteostasis in the pathogenesis of C9orf72 ALS and provide a framework for digital analysis of commonly used neuropathological stains as a tool to enrich our understanding of clinicopathological associations between cohorts.


Sign in / Sign up

Export Citation Format

Share Document