scholarly journals SINTESIS DAN KARAKTERISASI XEROGEL HASIL KOPRESIPITASI DARI PASIR PANTAI PANJANG BENGKULU

Alotrop ◽  
2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Finni Meyori ◽  
Rina Elvia ◽  
I Nyoman Candra

[SYNTHESIS AND CHARACTERIZATION OF XEROGEL RESULTS OF COPRECIPITATION OF LONG BEACH BENGKULU BEACH].  This research aims to synthesize and characterization to  Xerogel which synthesizes from Pantai Panjang  sands Bengkulu. The method used for this study to synthesizes Xerogel is to use the coprecipitation method. Qualitative XRF test against raw sand  materials that were used show that the content of the element is the most significant element of Si. The first  stages of the synthesis of Xerogel is a purification of the sand sample..  Xerogel synthesis is carried out in two phases, namely the manufacture of aqueous solutions of Sodium Silicate and continued with the formation of a gel. The production of Sodium Silicate solution is done using the NaOH concentration at 5, 6 and 7 M.  Gel formation process is done by adding a solution of HCl 10 M into the solution of Sodium Silicate, followed by process of filtration, washing and drying in the oven. The results showed that the optimum conditions of synthesis of Xerogel   obtained  using 6 M NaOH  , with a yield obtained is amounting at 0.8%. The results of the test by XRD shows that the silica crystal structure  on Xerogel  are amorphous-shaped. SEM-EDS test results show that the acquired  Xerogel on research has a smooth texture and size is not homogeneous with the highest content of elements are the elements Si and O.  PSA test shows that particle size in Xerogel an average at 191.4 nm. 

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2811
Author(s):  
Okpin Na ◽  
Kangmin Kim ◽  
Hyunjoo Lee ◽  
Hyunseung Lee

The purpose of this study is to optimize the composition of CSA (calcium sulfoaluminate) cement with sodium silicate (Na2SiO3) and gypsum for binder jetting 3D printing. The preliminary test was carried out with an applicator to decide the proper thickness of one layer before using the 3D printer. A liquid binder was then selected to maintain the shape of the particles. Based on the results, the optimal mixture of dry materials and a liquid activator was derived through various parametric studies. For dry materials, the optimum composition of CSA cement, gypsum, and sand was suggested, and the liquid activator made with sodium silicate solution and VMA (viscosity modified agent) were selected. The setting time with gypsum and sodium silicate was controlled within 30 s. In case of the delayed setting time and the rapid setting mixture, the jetting line was printed thicker or thinner and the accuracy of the printout was degraded. In order to adjust the viscosity of the liquid activator, 10% of the VMA was used in 35% of sodium silicate solution and the viscosity of 200–400 cP was suitable to be sprayed from the nozzle. With this optimal mixture, a prototype of atypical decorative wall was printed, and the compressive strength was measured at about 7 MPa.


2021 ◽  
Vol 10 (1) ◽  
pp. 268-283
Author(s):  
Yunlong Zhao ◽  
Yajie Zheng ◽  
Hanbing He ◽  
Zhaoming Sun ◽  
An Li

Abstract Bauxite reaction residue (BRR) produced from the poly-aluminum chloride (PAC) coagulant industry is a solid acidic waste that is harmful to environment. A low temperature synthesis route to convert the waste into water glass was reported. Silica dissolution process was systematically studied, including the thermodynamic analysis and the influence of calcium and aluminum on the leaching of amorphous silica. Simulation studies have shown that calcium and aluminum combine with silicon to form hydrated calcium silicate, silica–alumina gel, and zeolite, respectively, thereby hindering the leaching of silica. Maximizing the removal of calcium, aluminum, and chlorine can effectively improve the leaching of silicon in the subsequent process, and corresponding element removal rates are 42.81%, 44.15%, and 96.94%, respectively. The removed material is not randomly discarded and is reused to prepare PAC. The silica extraction rate reached 81.45% under optimal conditions (NaOH; 3 mol L−1, L S−1; 5/1, 75°C, 2 h), and sodium silicate modulus (nSiO2:nNa2O) is 1.11. The results indicated that a large amount of silica was existed in amorphous form. Precipitated silica was obtained by acidifying sodium silicate solution at optimal pH 7.0. Moreover, sodium silicate (1.11) further synthesizes sodium silicate (modulus 3.27) by adding precipitated silica at 75°C.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1015-1019
Author(s):  
Ze Xin Yang ◽  
Lin Dong ◽  
Meng Wang ◽  
Huan Li

The main purpose of this article is to develop an environmentally friendly and economically effective process to produce silica from rice husk ash. Sodium silicate solution was prepared by the reaction of rice husk ash and sodium hydroxide solution, and then the sodium silicate solution was used as the raw material for the preparation of silica with sodium bicarbonate. During the reaction, the by-product can be passed into CO2 to prepare sodium bicarbonate what can be reutilized. Experimental route achieved resource recycling and environment-friendly, low energy consumption, zero emissions and so on. Meanwhile the microstructures of the silica powders were characterized by Transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Thermo gravimetric/Differential thermal analyzer (TG-DTA).The purity of silicon was up to 99.43% and the particle size was 200-300nm.


2011 ◽  
Vol 357 (15) ◽  
pp. 3013-3021 ◽  
Author(s):  
Séka Simplice Kouassi ◽  
Monique Tohoué Tognonvi ◽  
Julien Soro ◽  
Sylvie Rossignol

2005 ◽  
Vol 8 (3) ◽  
pp. 74-80
Author(s):  
Sriyanti Sriyanti ◽  
Taslimah Taslimah ◽  
Nuryono Nuryono ◽  
Narsito Narsito

Silica gel is well known as a material that may be used as adsorbent, host matrix for catalyst, etc. Hence, synthesis of silica gel from rice hull ash has been done by evaluation of the effect of medium acidity and organic group immobilized in the snythesis of silica gel.Synthesis of silica gel was done by adding sodium silicate solution from rice hull ash to hydrochloric acid until pH 3, 5 and 7. Immobilization of thiol group and amino group in silica was done by adding 3-mercaptopropyltrimethoxysilane or 3-aminopropyl-trimethoxysilane to sodium silicate solution and hydrochloride acid solution until pH: 7. The products were characterized by X-ray deffractometer and FTIR Spectroscopy.Results showed that porousitas of silica increased with increasing medium acidity ( decreasing pH medium).Immobilization thiol or amino group in silica added a functional group on silica but did not destroy primary structure of silica gel.Key Words: Silica Gel, Rice Hull Ash, 3-mercaptopropyltrimethoxysilane, 3-aminopropyl-trimethoxysilane.


Sign in / Sign up

Export Citation Format

Share Document