scholarly journals The sodium 5-butyl-1,2-diphenyl-6-oxo-1,6-dihydropyrimidine-4-olate quantitative content determination in a standard sample

2021 ◽  
Vol 10 (4) ◽  
pp. 115-121
Author(s):  
E. V. Kuvaeva ◽  
D. A. Kolesnik ◽  
P. O. Levshukova ◽  
I. I. Terninko ◽  
I. P. Yakovlev ◽  
...  

Introduction. The standard samples (SS) use is a necessary condition for the medicines' quality control implementation. Their development is an urgent problem for the pharmaceutical industry, especially for new biologically active compounds that can be further used as pharmaceuticals.Aim. This work aim is to establish the 5-butyl-1,2-diphenyl-6-oxo-1,6-dihydro pyrimidone-4-olate sodium quantitative content, for which anti-inflammatory and analgesic activity was previously proven, in a standard sample.Materials and methods. This work aim is to establish the 5-butyl-1,2-diphenyl-6-oxo-1,6-dihydro pyrimidone-4-olate sodium quantitative content, for which anti-inflammatory and analgesic activity was previously proven, in a standard sample. The main method for establishing a substance quantitative content in the SS is the material balance method. The water determination was carried out according to K. Fisher's method (semimicro method). Sulphated ash was determined according to the XIV edition Russian Federation State Pharmacopoeia General Pharmacopoeia Monograph "Sulphated ash". Related impurities and their content were assessed using the HPLC method on a Flexar liquid chromatograph equipped with a diode array detector (Perkin Elmer, USA). The residual solvents' determination was carried out by the headspace method using a gas chromatograph GC-2010Plus Shimadzu with a flame ionization detector. As an additional method for establishing the main component quantitative content, acidimetric titration with the equivalence point potentiometric indication was carried out.Results and discussion. The percentage was determined for the following indicators: water, residual organic solvents, related impurities, sulphated ash. Using the material balance method, it was found that the 5-butyl-1,2-diphenyl-6-oxo-1,6-dihydropyrimidin-4-olate sodium percentage in a standard sample is 96.01 ± 0.50 %. It was found by acidimetric titration that the 5-butyl-1,2-diphenyl-6-oxo 1,6-dihydropyrimidin- 4-olate sodium quantitative content in SS is 95.12 ± 0.02 %. The difference in the certified value can be explained by the fact that during titration, the SS aciform is released, which precipitates in an aqueous medium and contributes to a shift in the equilibrium and pH value. Consequently, the equivalence point is reached somewhat earlier. However, the data are practically comparable, but it is necessary to use the value obtained by the material balance method.Conclusion. A standard sample certification parameters were determined: water content, residual organic solvents, sulphated ash, related impurities. The main component quantitative content was determined using the material balance method and titrimetry (acidimetry with the equivalence point potentiometric indication).

2021 ◽  
Vol 91 (1) ◽  
pp. 53-58
Author(s):  
D. A. Kolyesnik ◽  
P. O. Levshukova ◽  
Ye. V. Kuvayeva ◽  
I. I. Tyerninko ◽  
I. P. Yakovlev

The primary reference sample (RS) use is one of the conditions necessary for conducting pharmaceuticals appropriate quality control. Therefore, their development is an urgent problem for the pharmaceutical industry, especially for new biologically active compounds that can be further used as pharmaceuticals. The aim of the work is to develop a primary standard sample of new sodium 1,2-dipheny l-5-butyl-6-oxo-1,6-dihydropyrimidine-4-olate. This substance can be used in medical practice as an anti-inflammatory agent. Primary RS was obtained by additional purification of the additional pharmaceutical substance by threefold recrystallization of acetone. The work on its certification was the following: the structure was confirmed, such indicators as weight loss on drying, inorganic impurities (chlorides, sulphated ash, heavy metals), related impurities were determined. The main component quantitative content has been established using the material balance.


Author(s):  
Tri Handoyo ◽  
Suryo Prakoso

<em>The success of the discovery of new structure Akasia Bagus with potential L layer in 2009 at PT Pertamina EP's Jatibarang Field was followed up by the drilling infill wells with Plan of Development (POD) mechanism which is currently in the process of drilling the last well. The basis of the L layer hydrocarbon calculation in place on the POD is a static analysis. The wells currently produced are still able to flow with natural flow and enough production data since 2009 this structure was found. This study will present an analysis of production in the L layer of Akasia Bagus structure for Original Oil In Place (OOIP) updates using the conventional material balance method and then carry out the best development strategy to optimize oil production. Economic analysis is also carried out for reference in making decision on which scenario to choose. The conventional material balance method gets an OOIP value of 17.36 MMSTB, with the drive energy ratio being 5:3:2 for water influx : fluid expansion : gas cap expansion. Three (3) production optimization scenarios were analyzed, the results showed that the addition of 2 infill wells reached Recovery Factot (RF) of oil up to 23% of OOIP, minimal water production and attractive economic results.</em>


2019 ◽  
Vol 6 (5) ◽  
pp. 509-516 ◽  
Author(s):  
Hedong Sun ◽  
Hongyu Wang ◽  
Songbai Zhu ◽  
Haifeng Nie ◽  
Yang Liu ◽  
...  

2014 ◽  
Vol 977 ◽  
pp. 73-77
Author(s):  
Ai Hua Huang ◽  
Min Wang ◽  
Shan Si Tian ◽  
Hai Tao Xue ◽  
Zhi Wei Wang ◽  
...  

In order to calculate the efficiency of hydrocarbon expulsion by material balance method, we analyzed and corrected the geochemical parameters of five source rock samples. The hydrocarbon generation kinetic parameters of these samples were calibrated by the model of limited parallel first order reaction, and then these were extrapolated with the burial history and thermal history, then we got the hydrocarbon-generating section. Combined with the corrected geochemical parameters calculate the generating hydrocarbon amounts and expulsive hydrocarbon amounts. The result shows that: expulsion efficiency of hydrocarbon source rocks in this research were mainly between 59.1% -91.8%. It is determined by maturity (Ro), type of organic matter and pyrolysis parameters S1、S2.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Lixia Zhang ◽  
Yingxu He ◽  
Chunqiu Guo ◽  
Yang Yu

Abstract Determination of gas in place (GIP) is among the hotspot issues in the field of oil/gas reservoir engineering. The conventional material balance method and other relevant approaches have found widespread application in estimating GIP of a gas reservoir or well-controlled gas reserves, but they are normally not cost-effective. To calculate GIP of abnormally pressured gas reservoirs economically and accurately, this paper deduces an iteration method for GIP estimation from production data, taking into consideration the pore shrinkage of reservoir rock and the volume expansion of irreducible water, and presents a strategy for selecting an initial iteration value of GIP. The approach, termed DMBM-APGR (dynamic material balance method for abnormally pressured gas reservoirs) here, is based on two equations: dynamic material balance equation and static material balance equation for overpressured gas reservoirs. The former delineates the relationship between the quasipressure at bottomhole pressure and the one at average reservoir pressure, and the latter reflects the relationship between average reservoir pressure and cumulative gas production, both of which are rigidly demonstrated in the paper using the basic theory of gas flow through porous media and material balance principle. The method proves effective with several numerical cases under various production schedules and a field case under a variable rate/variable pressure schedule, and the calculation error of GIP does not go beyond 5% provided that the production data are credible. DMBM-APGR goes for gas reservoirs with abnormally high pressure as well as those with normal pressure in virtue of its strict theoretical foundation, which not only considers the compressibilities of rock and bound water, but also reckons with the changes in production rate and variations of gas properties as functions of pressure. The method may serve as a valuable and reliable tool in determining gas reserves.


Sign in / Sign up

Export Citation Format

Share Document