scholarly journals State Index of Bearing of Wind Turbine under Variable Loading Conditions to Predict Remaining Useful Life

2019 ◽  
Vol 10 (3) ◽  
pp. 22-30
Author(s):  
서윤호 ◽  
김봉기 ◽  
마평식 ◽  
SangRyul Kim
Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1459
Author(s):  
Penghao Wang ◽  
Hao Liu ◽  
Ming Hou ◽  
Limin Zheng ◽  
Yue Yang ◽  
...  

The major challenges for the commercialization of proton exchange membrane fuel cells (PEMFCs) are durability and cost. Prognostics and health management technology enable appropriate decisions and maintenance measures by estimating the current state of health and predicting the degradation trend, which can help extend the life and reduce the maintenance costs of PEMFCs. This paper proposes an online model-based prognostics method to estimate the degradation trend and the remaining useful life of PEMFCs. A non-linear empirical degradation model is proposed based on an aging test, then three degradation state variables, including degradation degree, degradation speed and degradation acceleration, can be estimated online by the particle filter algorithm to predict the degradation trend and remaining useful life. Moreover, a new health indicator is proposed to replace the actual variable loading conditions with the simulated constant loading conditions. Test results using actual aging data show that the proposed method is suitable for online remaining useful life estimation under variable loading conditions. In addition, the proposed prognostics method, which considers the activation loss and the ohmic loss to be the main factors leading to the voltage degradation of PEMFCs, can predict the degradation trend and remaining useful life at variable degradation accelerations.


2018 ◽  
Vol 116 ◽  
pp. 173-187 ◽  
Author(s):  
M.A. Djeziri ◽  
S. Benmoussa ◽  
R. Sanchez

2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Bhavana Valeti ◽  
Shamim N. Pakzad

Rotor blades are the most complex structural components in a wind turbine and are subjected to continuous cyclic loads of wind and self-weight variation. The structural maintenance operations in wind farms are moving towards condition based maintenance (CBM) to avoid premature failures. For this, damage prognosis with remaining useful life (RUL) estimation in wind turbine blades is necessary. Wind speed variation plays an important role influencing the loading and consequently the RUL of the structural components. This study investigates the effect of variable wind speed between the cutin and cut-out speeds of a typical wind farm on the RUL of a damage detected wind turbine blade as opposed to average wind speed assumption. RUL of wind turbine blades are estimated for different initial crack sizes using particle filtering method which forecasts the evolution of fatigue crack addressing the non-linearity and uncertainty in crack propagation. The stresses on a numerically simulated life size onshore wind turbine blade subjected to the above wind speed loading cases are used in computing the crack propagation observation data for particle filters. The effects of variable wind speed on the damage propagation rates and RUL in comparison to those at an average wind speed condition are studied and discussed.


Author(s):  
Boualem Merainani ◽  
Sofiane Laddada ◽  
Eric Bechhoefer ◽  
Mohamed Abdessamed Ait Chikh ◽  
Djamel Benazzouz

2020 ◽  
Vol 152 ◽  
pp. 138-154 ◽  
Author(s):  
Yubin Pan ◽  
Rongjing Hong ◽  
Jie Chen ◽  
Weiwei Wu

Sign in / Sign up

Export Citation Format

Share Document