A hybrid DBN-SOM-PF-based prognostic approach of remaining useful life for wind turbine gearbox

2020 ◽  
Vol 152 ◽  
pp. 138-154 ◽  
Author(s):  
Yubin Pan ◽  
Rongjing Hong ◽  
Jie Chen ◽  
Weiwei Wu
Energies ◽  
2016 ◽  
Vol 10 (1) ◽  
pp. 32 ◽  
Author(s):  
Wei Teng ◽  
Xiaolong Zhang ◽  
Yibing Liu ◽  
Andrew Kusiak ◽  
Zhiyong Ma

2019 ◽  
Vol 29 ◽  
pp. 31-36
Author(s):  
Sabareesh G R ◽  
Hemanth Mithun Praveen ◽  
Divya Shah ◽  
Krishna Dutt Pandey ◽  
Vamsi I

Wind Energy ◽  
2018 ◽  
Vol 22 (3) ◽  
pp. 360-375 ◽  
Author(s):  
James Carroll ◽  
Sofia Koukoura ◽  
Alasdair McDonald ◽  
Anastasis Charalambous ◽  
Stephan Weiss ◽  
...  

2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Sofia Koukoura

The purpose of this project is to predict wind turbine gearbox incipient faults using a combination of condition monitoring data. It is expected to contribute in developing a robust frame-work for wind turbine gearbox component incipient failure prediction and remaining useful life estimation. It further pro-poses a solution on how to overcome the challenges of expert knowledge based systems using AI techniques. Wind turbine operation and maintenance decision making confidence can be therefore increased.


Author(s):  
R Srinivasan ◽  
T Paul Robert

This research proposes a methodology to estimate the reliability of gearbox using life data analysis and predict the Lifetime Use Estimation (LUE). Life data analysis involves collection of historical field replacements of gearbox and perform statistical analysis such as Weibull analysis to estimate the reliability. Remaining useful life is estimated by using Cumulative damage model and data-driven methods. The first approach is based on the physics of failure models of degradation and the second approach is based on the operational, environmental & loads data provided by the design team which is translated into a mathematical model that represent the behavior of the degradation. Data-driven method is used in this research, where the different performance data from components are exploited to model the degradation's behavior. LUE is used to make key business decisions such as planning of spares, service cost and increase availability of wind turbine. Gearbox is the heart of the wind turbine and it is made up of several stages of helical/planetary gears. Performance data is acquired separately for each of these stages and LUE is calculated individually. The individual LUE is then rolled up to estimate the overall Lifetime Use Estimation of gearbox. This will identify the weak link which is going to fail first and the failure mode which is driving the primary failure can be identified. Finally, corrective measures can be planned accordingly. The cumulated damage and LUE are estimated by using Inverse power law damage model along with Miner’s rule.


2018 ◽  
Vol 116 ◽  
pp. 173-187 ◽  
Author(s):  
M.A. Djeziri ◽  
S. Benmoussa ◽  
R. Sanchez

2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Bhavana Valeti ◽  
Shamim N. Pakzad

Rotor blades are the most complex structural components in a wind turbine and are subjected to continuous cyclic loads of wind and self-weight variation. The structural maintenance operations in wind farms are moving towards condition based maintenance (CBM) to avoid premature failures. For this, damage prognosis with remaining useful life (RUL) estimation in wind turbine blades is necessary. Wind speed variation plays an important role influencing the loading and consequently the RUL of the structural components. This study investigates the effect of variable wind speed between the cutin and cut-out speeds of a typical wind farm on the RUL of a damage detected wind turbine blade as opposed to average wind speed assumption. RUL of wind turbine blades are estimated for different initial crack sizes using particle filtering method which forecasts the evolution of fatigue crack addressing the non-linearity and uncertainty in crack propagation. The stresses on a numerically simulated life size onshore wind turbine blade subjected to the above wind speed loading cases are used in computing the crack propagation observation data for particle filters. The effects of variable wind speed on the damage propagation rates and RUL in comparison to those at an average wind speed condition are studied and discussed.


Author(s):  
Boualem Merainani ◽  
Sofiane Laddada ◽  
Eric Bechhoefer ◽  
Mohamed Abdessamed Ait Chikh ◽  
Djamel Benazzouz

Sign in / Sign up

Export Citation Format

Share Document