turbine shaft
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 37)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 14 (2) ◽  
pp. 99-105
Author(s):  
Ma'mun Abdul Karim ◽  
Jojo Sumarjo ◽  
Najmudin Fauji

The screw type water turbine is one type of water turbine that has the potential to generate electricity on a small scale that is environmentally friendly, where this screw type water turbine is very suitable for rivers and irrigation flows in the territory of Indonesia because the use or operation of this turbine only requires low turbine head, looking at the potential for irrigation river water flow with a discharge range of 0.01-0.1 m3/s located in the lowlands in a Karawang district, it is possible to install or apply this screw type water turbine. In this study aims to be able to utilize the source of irrigation flow so that it can be converted into a source of electrical energy that can be utilized by local residents and for lighting on roads that are still poorly lit. In the process of designing a screw type water turbine, mechanical calculations are carried out to determine thedimensions of the turbine blades, turbine shaft, transmission systems such as pulleys and belts, as well as the power that can be generated by the turbine, with a relative head between 0.5 meters, 0.75 meters, and 0.9 meters and determine the correct components. The results of this calculation are obtained in the form of output power from each different head height for head 0.5, the power obtained is 220.89795 watts, for the 0.75 m head, the power is 394.29519 watts, and for the height 0.9, the output power is 356.13926 watts, the results of the design will then be made and will be realized.


2021 ◽  
Vol 927 (1) ◽  
pp. 012031
Author(s):  
Muhammad Arif Afandy ◽  
Ifani P Ramadhani ◽  
Totok R Biyanto

Abstract Gas Turbine Compressors are used by Saka Indonesia Pangkah Ltd. in upstream oil and gas facilities either to boost hydrocarbon products to downstream facilities or to lift liquid hydrocarbon as a common artificial method. As production rate declining leads to gas supply deficiency to the compressors, the operating point move to surge line away from the best efficiency point. Gas feed shortage affecting the compressor’s performance which contributed to head and flow capacity. This condition is then calculated and simulated using UNISIM Design Simulator to get optimum configuration results. The simulation was performed at the same gas turbine shaft power output of each compressor. Two cases of centrifugal compressors configuration with different functions and performance are studied. Due to process dynamic conditions, constraint parameter is considered as per desired operating point. This paper also analyses techno-economic aspects between individual and serial pipelines arrangement of the two compressors by evaluating operational data and design calculation. Subsequently, this study produces assessment observations associated with the compressor performance both in individual and serial configuration and eventually analyses the rate of fuel consumption in the gas turbines as the main driver. The case study shows serial arrangement between MPC-1 and GLC with same gas turbine shaft power as individual configuration can reduce fuel consumption up to 47 kg/hr. It saves as much as USD 7,569.96 per day at low demand and USD 7,569.96 at high-demand cases.


Author(s):  
Boualem Merainani ◽  
Sofiane Laddada ◽  
Eric Bechhoefer ◽  
Mohamed Abdessamed Ait Chikh ◽  
Djamel Benazzouz

2021 ◽  
Vol 118 (3) ◽  
pp. 134-141
Author(s):  
Аlina Fazylova

Eddy current sensors are used to measure shaft clearance in wind turbines and to check that there is a thin film of oil in the clearance. In this case, the oil is usually applied under pressure. Because the eddy current sensors are resistant to oil, pressure and temperature, this allows them to operate reliably in these hostile environments. When the gap becomes too large, a maintenance warning is generated. Eddy current sensors help detect axial and radial deflection of the turbine shaft. Radial movement occurs when the shaft is off-center. Axial movement indicates that the shaft is tilted relative to the central axis. Both cannot be eliminated completely. However, with significant deviations, increased bearing wear occurs. If such situations are detected, the turbine should be shut down as soon as possible for maintenance, even before an accident occurs. Finally, eddy current sensors are used to measure forces or torques applied to the nacelle. These influences can be caused by vibration, wind loads or other factors that, over time, can lead to the destruction of the entire structure. Eddy current sensors can also be used to measure axial, radial or tangential deflection of clutch discs, which ensure the safety of the rotor in the event of strong winds. This article provides a method for calculating an inductive sensor. This calculation will allow you to correctly develop a wind turbine eddy current sensor.


The exhaust gas spouting from the exhaust manifold into the radial inflow turbine coupled to an exhaust pipe of a 2.5L petrol engine has been computationally simulated in order to ascertain the extent of exhaust energy recoverability for driving the vehicle auxiliaries, using Autodesk CFD. In order to determine the amount of power available at the turbine shaft at varying engine speeds, properties of the flow and fluid spouting into the turbine from the engine and out of the turbine from the volute outlet were examined by applying the SST k-? turbulence model and advanced Petrov-Galerkin's advection scheme. For the test engine used with the operating range of 2000-6000rpm, at engine speeds up to 3000rpm, the available power was about 0.3kW. At 4000rpm, about 2.8kW of power is available at the turbine shaft, increasing to 7.7kW at 5000rpm and 43.6kW at 6000rpm. Curve-fitting shows that at 5500rpm, as much as 15kW reversible power can be extracted from a shaft coupled to the turbocharger turbine. With an electrically-assisted turbine component of the turbocharger used, the compressor of vapour compression refrigeration system of the vehicle will be efficiently driven at all engine speeds while exhaust energy recovery is achieved.


Sign in / Sign up

Export Citation Format

Share Document