scholarly journals Export stoichiometry and contribution of copepod faecal pellets to vertical flux of particulate organic carbon, nitrogen and phosphorus

2012 ◽  
Vol 459 ◽  
pp. 17-28 ◽  
Author(s):  
T Tamelander ◽  
AB Aubert ◽  
C Wexels Riser
2015 ◽  
Vol 12 (23) ◽  
pp. 19579-19626 ◽  
Author(s):  
S. Bonnet ◽  
H. Berthelot ◽  
K. Turk-Kubo ◽  
S. Fawcett ◽  
E. Rahav ◽  
...  

Abstract. N2 fixation rates were measured daily in large (~ 50 m3) mesocosms deployed in the tropical South West Pacific coastal ocean (New Caledonia) to investigate the spatial and temporal dynamics of diazotrophy and the fate of diazotroph-derived nitrogen (DDN) in a low nutrient, low chlorophyll ecosystem. The mesocosms were intentionally fertilized with ~ 0.8 μM dissolved inorganic phosphorus (DIP) to stimulate diazotrophy. Bulk N2 fixation rates were replicable between the three mesocosms, averaged 18.5 ± 1.1 nmol N L−1 d−1 over the 23 days, and increased by a factor of two during the second half of the experiment (days 15 to 23) to reach 27.3 ± 1.0 nmol N L−1 d−1. These rates are higher than the upper range reported for the global ocean, indicating that the waters surrounding New Caledonia are particularly favourable for N2 fixation. During the 23 days of the experiment, N2 fixation rates were positively correlated with seawater temperature, primary production, bacterial production, standing stocks of particulate organic carbon, nitrogen and phosphorus, and alkaline phosphatase activity, and negatively correlated with DIP concentrations, DIP turnover time, nitrate, and dissolved organic nitrogen and phosphorus concentrations. The fate of DDN was investigated during the bloom of the unicellular diazotroph, UCYN-C, that occurred during the second half of the experiment. Quantification of diazotrophs in the sediment traps indicates that ~ 10 % of UCYN-C from the water column were exported daily to the traps, representing as much as 22.4 ± 5.5 % of the total POC exported at the height of the UCYN-C bloom. This export was mainly due to the aggregation of small (5.7 ± 0.8 μm) UCYN-C cells into large (100–500 μm) aggregates. During the same time period, a DDN transfer experiment based on high-resolution nanometer scale secondary ion mass spectrometry (nanoSIMS) coupled with 15N2 isotopic labelling revealed that 16 ± 6 % of the DDN was released to the dissolved pool and 21 ± 4 % was transferred to non-diazotrophic plankton, mainly picoplankton (18 ± 4 %) followed by diatoms (3 ± 2 %) within 24 h of incubation. This is consistent with the observed dramatic increase in picoplankton and diatom abundances, primary production, bacterial production and standing stocks of particulate organic carbon, nitrogen and phosphorus during the second half of the experiment in the mesocosms. These results offer insights into the fate of DDN during a bloom of UCYN-C in low nutrient, low chlorophyll ecosystems.


Author(s):  
M. W. Banoub ◽  
P. J. leB. Williams

A seasonal survey of particulate and dissolved organic material was made at E1 in the English Channel during 1968. The average integral mean values were: dissolved organic carbon 65 μg-at C/l (780 μg C/l); dissolved organic nitrogen 4·6 μg-at N/l (64 μg N/l); dissolved organic phosphorus 0·12 μg-at P/l (3·8 μg P/l); particulate organic carbon 190 μg C/l and particulate organic nitrogen 21 μg N/l. Dissolved organic carbon and the particulate organic carbon and nitrogen showed increases subsequent to the spring bloom; such increases were less evident in the dissolved organic nitrogen results and not apparent in those of dissolved organic phosphorus.Analyses were also made in March and June in 1969 at two other stations in the English Channel, in addition to E1. The results from the three stations were basically similar.


Sign in / Sign up

Export Citation Format

Share Document