standing stocks
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 17)

H-INDEX

32
(FIVE YEARS 0)

2021 ◽  
Vol 193 (11) ◽  
Author(s):  
Montserrat Filella ◽  
Juan-Carlos Rodríguez-Murillo ◽  
Andrew Turner

AbstractPlastics (n = 3880) have been sampled from 39 beaches of ten Swiss lakes of varying sizes, hydrodynamics, and catchments, with a selection (n = 598) analysed for potentially hazardous (and regulated) chemical elements (As, Ba, Br, Cd, Cr, Hg, Pb, Sb, Se) by X-ray fluorescence spectrometry. Plastic objects and fragments with identifiable or unidentifiable origins were present on all beaches surveyed, and were often most abundant in proximity to major riverine inputs. Chemical elements were detected in between two (Hg) and 340 (Ba) samples with maximum concentrations exceeding 2% by weight for Ba, Cd, Cr, Pb, and Sb. Inter-element relationships and characteristics of the samples suggest that elements are largely present as various additives, including pigments (e.g., Cd2SSe, PbCrO4), stabilizers (in polyvinyl chloride), and flame retardants (Br). Observations are similar to, and complement, those previously reported in Switzerland’s largest lake (Lake Geneva). Comparison of concentrations of targeted chemical elements in beached plastic with currently used plastics illustrate the interest of these types of measurements in providing an insight into the persistence of plastics in standing stocks and in lakes. This information could help to introduce management schemes that consider whether plastic pollution is new or old and act accordingly.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuqiu Wei ◽  
Zhaoyi Zhang ◽  
Zhengguo Cui ◽  
Jun Sun

Biogenic silica (bSi) standing stocks and carbon (C) biomass of small plankton are rarely studied together in previous analyses, especially in oligotrophic gyres. Within the oligotrophic western tropical North Pacific, based on size-fractionated bSi and biovolume-derived C analyses in three size fractions (i.e., 0.2–2; 2–20; >20 μm), we observed that picophytoplankton (<2 μm) contributed a measurable and significant proportion of both bSi standing stocks and C biomass. The estimated contributions of pico-sized fraction to total bSi standing stocks and living C biomass averaged 66 and 49%, respectively, indicating the ecological importance of small plankton in the Si and C cycles in oligotrophic areas. In contrast, the average contributions of large diatoms (i.e., cells >2 μm) to total bSi standing stocks and living C biomass were 9 and 16%, respectively, suggesting that the role of diatoms in marine Si and C cycles may have been overestimated in previous analyses. Due to the overwhelming predominance of picocyanobacteria in the oligotrophic western tropical North Pacific, their contributions to total bSi stocks and C biomass were quantitatively important and accounted for more of the bSi and C associated with living cells than did diatoms. In addition, water temperature and light intensity were likely the key determinants of the variations in size-fractionated bSi standing stocks and living C biomass, but not nutrient availability. Collectively, these findings encourage a reconsideration of the previously underestimated role of small plankton in understanding the Si and C cycles in the ocean, and may provide insights into the interpretations of disproportionate budgets of Si and C in oligotrophic oceans.


2021 ◽  
Vol 8 ◽  
Author(s):  
Griselda Anglada-Ortiz ◽  
Katarzyna Zamelczyk ◽  
Julie Meilland ◽  
Patrizia Ziveri ◽  
Melissa Chierici ◽  
...  

Planktic foraminifera and shelled pteropods are some of the major producers of calcium carbonate (CaCO3) in the ocean. Their calcitic (foraminifera) and aragonitic (pteropods) shells are particularly sensitive to changes in the carbonate chemistry and play an important role for the inorganic and organic carbon pump of the ocean. Here, we have studied the abundance distribution of planktic foraminifera and pteropods (individuals m–3) and their contribution to the inorganic and organic carbon standing stocks (μg m–3) and export production (mg m–2 day–1) along a longitudinal transect north of Svalbard at 81° N, 22–32° E, in the Arctic Ocean. This transect, sampled in September 2018 consists of seven stations covering different oceanographic regimes, from the shelf to the slope and into the deep Nansen Basin. The sea surface temperature ranged between 1 and 5°C in the upper 300 m. Conditions were supersaturated with respect to CaCO3 (Ω > 1 for both calcite and aragonite). The abundance of planktic foraminifera ranged from 2.3 to 52.6 ind m–3 and pteropods from 0.1 to 21.3 ind m–3. The planktic foraminiferal population was composed mainly of the polar species Neogloboquadrina pachyderma (55.9%) and the subpolar species Turborotalita quinqueloba (21.7%), Neogloboquadrina incompta (13.5%) and Globigerina bulloides (5.2%). The pteropod population was dominated by the polar species Limacina helicina (99.6%). The rather high abundance of subpolar foraminiferal species is likely connected to the West Spitsbergen Current bringing warm Atlantic water to the study area. Pteropods dominated at the surface and subsurface. Below 100 m water depth, foraminifera predominated. Pteropods contribute 66–96% to the inorganic carbon standing stocks compared to 4–34% by the planktic foraminifera. The inorganic export production of planktic foraminifera and pteropods together exceeds their organic contribution by a factor of 3. The overall predominance of pteropods over foraminifera in this high Arctic region during the sampling period suggest that inorganic standing stocks and export production of biogenic carbonate would be reduced under the effects of ocean acidification.


2021 ◽  
pp. 102616
Author(s):  
Mikołaj Mazurkiewicz ◽  
Kirstin Meyer-Kaiser ◽  
Andrew K. Sweetman ◽  
Paul E. Renaud ◽  
Maria Włodarska–Kowalczuk

2021 ◽  
Author(s):  
Jen Drummond ◽  
José Gonçalves ◽  
Tomás Aquino ◽  
Susana Bernal ◽  
Esperança Gacia ◽  
...  

<p>Rivers transport pathogenic microorganisms (including fecal indicator bacteria and human enteric viruses) from point and non-point sources over long distances, posing a direct risk for human health. Yet, pathogens in surface waters can be deposited and transitorily immobilized and accumulated together with other fine particles in streambed sediments, mostly within the top few centimeters. These dynamic fine particle standing stocks retain and delay downstream transmission of pathogens during baseflow conditions, but contribute to their resuspension and transport downstream during stormflow events. Direct measurements of pathogen accumulation in streambed sediments are rare. Further, it is unknown whether pathogen accumulation is constrained near to the point source inputs or if the continuous deposition and resuspension of pathogens results in the transmission of active pathogens further downstream. </p><p>In this study, we analyze fine particle standing stocks along a 1 km reach of an intermittent Mediterranean stream receiving inputs from the effluent of a wastewater treatment plant (WWTP), during a summer drought when the effluent constituted 100% of the stream flow, and thus, large accumulation and persistence of pathogens along the streambed was expected. We measured abundance of total bacteria, <em>Escherichia coli</em> (as a fecal indicator bacteria), and presence of enteric rotavirus (RoV) and norovirus (NoV). We also monitored environmental variables such as water temperature, dissolved oxygen, total benthic particulate matter, and fraction of organic matter.  Abundance of <em>E. coli</em>, based on qPCR detection, was high  (~ 1 ng/μL) along the first 100 m downstream of the WWTP effluent input, and we found trace amounts of RoV and NoV.  Furthermore, <em>E. coli</em> was present along the first km downstream of the WWTP effluent input with a logarithmic decline in concentration with distance. These results were combined with a particle tracking model that uses stream water velocity as an input and accounts for hyporheic exchange, pathogen immobilization, degradation and resuspension during baseflow and stormflow conditions.  Model results indicate that even at very low flows (<20 L/s), pathogens can be transported over long distances (> 1km), but that the extent of longitudinal transport varies among pathogen types.  These results demonstrate that benthic standing stocks of fine particles act as hot spots of pathogen accumulation in streams, and that the interplay between immobilization, degradation, the extent of resuspension and downstream transport during storms and time between storms determine pathogen concentrations in the streambed. </p><p> </p>


2021 ◽  
Vol 7 ◽  
Author(s):  
Christine Dybwad ◽  
Philipp Assmy ◽  
Lasse M. Olsen ◽  
Ilka Peeken ◽  
Anna Nikolopoulos ◽  
...  

Phytoplankton blooms in the Arctic Ocean's seasonal sea ice zone are expected to start earlier and occur further north with retreating and thinning sea ice cover. The current study is the first compilation of phytoplankton bloom development and fate in the seasonally variable sea ice zone north of Svalbard from winter to late summer, using short-term sediment trap deployments. Clear seasonal patterns were discovered, with low winter and pre-bloom phytoplankton standing stocks and export fluxes, a short and intense productive season in May and June, and low Chl a standing stocks but moderate carbon export fluxes in the autumn post-bloom conditions. We observed intense phytoplankton blooms with Chl a standing stocks of >350 mg m−2 below consolidated sea ice cover, dominated by the prymnesiophyte Phaeocystis pouchetii. The largest vertical organic carbon export fluxes to 100 m, of up to 513 mg C m−2 day−1, were recorded at stations dominated by diatoms, while those dominated by P. pouchetii recorded carbon export fluxes up to 310 mg C m−2 day−1. Fecal pellets from krill and copepods contributed a substantial fraction to carbon export in certain areas, especially where blooms of P. pouchetii dominated and Atlantic water advection was prominent. The interplay between the taxonomic composition of protist assemblages, large grazers, distance to open water, and Atlantic water advection was found to be crucial in determining the fate of the blooms and the magnitude of organic carbon exported out of the surface water column. Previously, the marginal ice zone was considered the most productive region in the area, but our study reveals intense blooms and high export events in ice-covered waters. This is the first comprehensive study on carbon export fluxes for under-ice phytoplankton blooms, a phenomenon suggested to have increased in importance under the new Arctic sea ice regime.


Diversity ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 485
Author(s):  
Giovanni A. P. dos Santos ◽  
Alexsandra C. Silva ◽  
André M. Esteves ◽  
Venina P. Ribeiro-Ferreira ◽  
Patricia. F. Neres ◽  
...  

A better understanding of deep-sea biology requires knowledge of the structure and function of their communities, the spatial, temporal, and environmental patterns, and the changes and dynamics that govern them. Some of the most studied patterns in deep-sea biology are those related to bathymetrical gradients. For meiofauna and nematodes, such studies have highlighted the importance of recognizing regional differences in using ecological mechanisms to explain those patterns. Despite holding significant fisheries and oil and gas resources, the eastern Brazilian Continental Margin is poorly understood with respect to its seafloor biology and ecology. To answer ecological questions of deep-sea infaunal structural and functional diversity in relation to bathymetrical patterns, we used nematode data from five bathymetric transects (400, 1000, 1900, 2500, and 3000 m water depth) sampled in 2011 and 2013 on the Espírito Santo slope off the coast of southeast (SE) Brazil. Deep nematode community analysis based on 6763 nematode identifications showed very high levels of diversity (201 genera; 43 families) compared to other ocean basins and deep-sea regions. Our analyses showed that there is a distinct bathymetric break in standing stocks and community structure between 1000 and 1900 m. Nematode standing stocks were much higher at 400 and 1000 m compared to those for similar depths worldwide, likely linked to the intense and frequent upwelling and specific hydrographic and topographic identity of the region. The bathymetric break was not present for structural and functional nematode diversity. Instead, bathymetric regressions showed that they increased gradually toward 3000 m water depth. The deep Espírito Santo basin is characterized by rich and equitable nematode communities that are both mature and trophically diverse. General deep-sea ecological theories apply to our findings, but there are also substantial regional effects related to the local margin topography, upwelling, and oceanographic and hydrodynamic processes that make the Espírito Santo Basin a unique and diverse deep-sea ecosystem.


Sign in / Sign up

Export Citation Format

Share Document