scholarly journals ATMOSPHERIC DISPERSION MODELING OF BASIS-DESIGN ACCIDENT (LOCA) AND RADIOACTIVE DOSE ASSESSMENT OF TWO PROPOSED SITES FOR NUCLEAR POWER PLANT IN TUNISIA

Author(s):  
Riadh Souissi . ◽  
Faten Tawfik . ◽  
Abou Bakr Ramadan . ◽  
Nafaa Reguigui .
2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Kwame Gyamfi ◽  
Sylvester Attakorah Birikorang ◽  
Emmanuel Ampomah-Amoako ◽  
John Justice Fletcher

Abstract Atmospheric dispersion modeling and radiation dose calculation have been performed for a generic 1000 MW water-water energy reactor (VVER-1000) assuming a hypothetical loss of coolant accident (LOCA). Atmospheric dispersion code, International Radiological Assessment System (InterRAS), was employed to estimate the radiological consequences of a severe accident at a proposed nuclear power plant (NPP) site. The total effective dose equivalent (TEDE) and the ground deposition were calculated for various atmospheric stability classes, A to F, with the site-specific averaged meteorological conditions. From the analysis, 3.7×10−1 Sv was estimated as the maximum TEDE corresponding to a downwind distance of 0.1 km within the dominating atmospheric stability class (class A) of the proposed site. The intervention distance for evacuation (50 mSv) and sheltering (10 mSv) were estimated for different stability classes at different distances. The intervention area for evacuation ended at 0.5 km and that for sheltering at 1.5 km. The results from the study show that designated area for public occupancy will not be affected since the estimated doses were below the annual regulatory limits of 1 mSv.


Radiocarbon ◽  
2019 ◽  
Vol 61 (5) ◽  
pp. 1185-1197 ◽  
Author(s):  
Algirdas Pabedinskas ◽  
Evaldas Maceika ◽  
Justina Šapolaitė ◽  
Žilvinas Ežerinskis ◽  
Laurynas Juodis ◽  
...  

ABSTRACTA radiocarbon (14C) activity analysis in the tree rings around Ignalina nuclear power plant (INPP) has been carried out with the aim to test the hypothesis to use 14C tree-ring analysis data as a tool for the reconstruction of gaseous releases from NPP to the environment. The INPP has been in decommissioning state since the end of 2009. Tree-ring samples for 14C analysis were collected 7 yr after final power unit shutdown from the INPP vicinity. The samples from 5 sampling locations were collected, prepared and measured using the Single Stage Accelerator Mass Spectrometer (SSAMS). Data analysis represents observable Ignalina NPP influence by 14C increase up to 15 pMC (percent modern carbon) in tree rings. Good correlations of the 14C concentrations and wind direction were obtained. The main purpose of this article was to match 14C measurement data along with the atmospheric dispersion modeling of emissions in order to retrospectively characterize the emission source.


2019 ◽  
Vol 127 ◽  
pp. 156-164 ◽  
Author(s):  
Ismael Mohammed Mohammed Saeed ◽  
Muneer Aziz Mohammed Saleh ◽  
Suhairul Hashim ◽  
Ahmad Termizi bin Ramli ◽  
Shwan H.H. Al-Shatri

2019 ◽  
Vol 15 (4) ◽  
pp. 532-536
Author(s):  
Nurlyana Omar ◽  
Meng-Hock Koh ◽  
Suhairul Hashim

Malaysia has considered for some time to adopt nuclear power to cater to the increasing demand of electricity following other developed Asian countries such as Japan, Korea, and China. In implementing a nuclear power plant, strict regulations and guidelines by the International Atomic Energy Agency (IAEA) and International Commission on Radiological Protection (ICRP) must be fulfilled before any construction license is given for a new nuclear power program. One of the assessments include the estimation of potential radiological risks to both humans and environment from routine and accidental release of radioactive effluent from the nuclear power plant (NPP). In this work, simulations of radionuclide dispersion from a hypothetical NPP site in Mersing, Johor will be presented. The simulation was performed based on the Lagrangian atmospheric dispersion model using the HYSPLIT software. The radioactive effluent release rate was approximated to the value found in the Fukushima Dai-ichi accident in 2011. Meteorological data of 2017 were utilized in this study. Simulation results showed that the dispersion of radioactive effluent from the hypothetical NPP can potentially affect areas around Johor Bahru district, Singapore, and even some areas in Indonesia.


2012 ◽  
Vol 518-523 ◽  
pp. 1242-1246 ◽  
Author(s):  
Rui Ping Guo ◽  
Chun Lin Yang

The growing concern over the effect of atmosphere dispersion resulted from radioactive material was noticeable. This paper demonstrated the variance of atmosphere dispersion factor for accident release from nuclear power plant through running PAVAN (Atmospheric Dispersion of Radioactive Releases from Nuclear Power Plants) model. Also, we investigated the effect of release height (short for H) on atmosphere dispersion factor and compared the correlation between atmosphere dispersion factor and dispersion distance. Our results showed that atmosphere dispersion factor would descend with increased release height. As dispersion distance increasing, the tendency of atmosphere dispersion factor expressed complicated status caused by the difference of wind direction. It was illustrated that the phenomena was caused by the integrated action between the wind direction and release height. The probability distribution of atmosphere dispersion factor also validated that the distribution was depend on the wind direction. Probability analysis indicated that the atmosphere dispersion factor under H=100m was overall less than that under H=75m.


Sign in / Sign up

Export Citation Format

Share Document