scholarly journals On some classes of sublattices of the subgroup lattice

Author(s):  
Alexander N. Skiba

In this paper G always denotes a group. If K and H are subgroups of G, where K is a normal subgroup of H, then the factor group of H by K is called a section of G. Such a section is called normal, if K and H are normal subgroups of G, and trivial, if K and H are equal. We call any set S of normal sections of G a stratification of G, if S contains every trivial normal section of G, and we say that a stratification S of G is G-closed, if S contains every such a normal section of G, which is G-isomorphic to some normal section of G belonging S. Now let S be any G-closed stratification of G, and let L be the set of all subgroups A of G such that the factor group of V by W, where V is the normal closure of A in G and W is the normal core of A in G, belongs to S. In this paper we describe the conditions on S under which the set L is a sublattice of the lattice of all subgroups of G and we also discuss some applications of this sublattice in the theory of generalized finite T-groups.

Author(s):  
John Leech

The infinite groupis the group of direct symmetry operations of the tessellation {3,7} of the hyperbolic plane ((3), chapter 5). This has the smallest fundamental region of any such tessellation, and related to this property is the fact that the group (2, 3, 7) has a remarkable wealth of interesting finite factor groups, corresponding to the finite maps obtained by identifying the results of suitable translations in the hyperbolic plane. The simplest example of this is the group LF(2,7), which is Klein's simple group of order 168. I have studied this group in an earlier paper ((4)), showing inter alia that the group is obtained as a factor group of (2,3,7) by adjoining any one of the relationseach of which implies the others. The method used was to find a set of generators for the normal subgroup with quotient group LF(2,7) and, working entirely within this subgroup, to exhibit that any one of these relations implies its collapse. The technique of working with this subgroup had been developed earlier and applied in (6) to prove that the factor groupis finite and of order 10,752.


2011 ◽  
Vol 31 (6) ◽  
pp. 1835-1847 ◽  
Author(s):  
PAUL A. SCHWEITZER, S. J.

AbstractWe determine all the normal subgroups of the group of Cr diffeomorphisms of ℝn, 1≤r≤∞, except when r=n+1 or n=4, and also of the group of homeomorphisms of ℝn ( r=0). We also study the group A0 of diffeomorphisms of an open manifold M that are isotopic to the identity. If M is the interior of a compact manifold with non-empty boundary, then the quotient of A0 by the normal subgroup of diffeomorphisms that coincide with the identity near to a given end e of M is simple.


1969 ◽  
Vol 9 (3-4) ◽  
pp. 478-488 ◽  
Author(s):  
B. H. Neumann

This note is concerned with a translation of some concepts and results about characteristic subgroups of a group into the language of categories. As an example, consider strictly characteristic and hypercharacteristic subgroups of a group: the subgroup H of the group G is called strictly characteristic in G if it admits all ependomorphisms of G; that is all homomorphic mappings of G onto G; and H is called hypercharacteristic2 in G if it is the least normal subgroup with factor group isomorphic to G/H, that is if H is contained in every normal subgroup K of G with G/K ≅ G/H.


Author(s):  
L.A. Kurdachenko ◽  
◽  
A.A. Pypka ◽  
I.Ya. Subbotin ◽  
◽  
...  

We investigate the influence of some natural types of subgroups on the structure of groups. A subgroup H of a group G is called contranormal in G, if G = HG. A subgroup H of a group G is called core-free in G, if CoreG(H) =〈1〉. We study the groups, in which every non-normal subgroup is either contranormal or core-free. In particular, we obtain the structure of some monolithic and non-monolithic groups with this property


2019 ◽  
Vol 18 (04) ◽  
pp. 1950074
Author(s):  
Xuewu Chang

The normal embedding problem of finite solvable groups into [Formula: see text]-groups was studied. It was proved that for a finite solvable group [Formula: see text], if [Formula: see text] has a special normal nilpotent Hall subgroup, then [Formula: see text] cannot be a normal subgroup of any [Formula: see text]-group; on the other hand, if [Formula: see text] has a maximal normal subgroup which is an [Formula: see text]-group, then [Formula: see text] can occur as a normal subgroup of an [Formula: see text]-group under some suitable conditions. The results generalize the normal embedding theorem on solvable minimal non-[Formula: see text]-groups to arbitrary [Formula: see text]-groups due to van der Waall, and also cover the famous counterexample given by Dade and van der Waall independently to the Dornhoff’s conjecture which states that normal subgroups of arbitrary [Formula: see text]-groups must be [Formula: see text]-groups.


1990 ◽  
Vol 108 (3) ◽  
pp. 467-474 ◽  
Author(s):  
John Hempel

For X a subset of a group G, the smallest normal subgroup of G which contains X is called the normal closure of X and is denoted by ngp (X; G) or simply by ngp (X) if there is no possibility of ambiguity. By a surface group we mean the fundamental group of a compact surface. We are interested in determining when a normal subgroup of a surface group contains a simple loop – the homotopy class of an embedding of S1 in the surface, or more generally, a power of a simple loop. This is significant to the study of 3-manifolds since a Heegaard splitting of a 3-manifold is reducible (cf. [2]) if and only if the kernel of the corresponding splitting homomorphism contains a simple loop. We give an answer in the case that the normal subgroup is the normal closure ngp (α) of a single element α: if ngp (α) contains a (power of a) simple loop β then α is homotopic to a (power of a) simple loop and β±1 is homotopic either to (a power of) α or to the commutator [α, γ] of a with some simple loop γ meeting a transversely in a single point. This implies that if a is not homotopic to a power of a simple loop, then the quotient map π1(S) → π1(S)/ngp (α) does not factor through a group with more than one end. In the process we show that π1(S)/ngp (α) is locally indicable if and only if α is not a proper power and that α always lifts to a simple loop in the covering space Sα of S corresponding to ngp (α). We also obtain some estimates on the minimal number of double points in certain homotopy classes of loops.


Author(s):  
Jonathan A. Hillman

AbstractWe extend earlier work relating asphericity and Euler characteristics for finite complexes whose fundamental groups have nontrivial torsion free abelian normal subgroups. In particular a finitely presentable group which has a nontrivial elementary amenable subgroup whose finite subgroups have bounded order and with no nontrivial finite normal subgroup must have deficiency at most 1, and if it has a presentation of deficiency 1 then the corresponding 2-complex is aspherical. Similarly if the fundamental group of a closed 4-manifold with Euler characteristic 0 is virtually torsion free and elementary amenable then it either has 2 ends or is virtually an extension of Z by a subgroup of Q, or the manifold is asphencal and the group is virtually poly- Z of Hirsch length 4.


2013 ◽  
Vol 12 (05) ◽  
pp. 1250204
Author(s):  
AMIN SAEIDI ◽  
SEIRAN ZANDI

Let G be a finite group and let N be a normal subgroup of G. Assume that N is the union of ξ(N) distinct conjugacy classes of G. In this paper, we classify solvable groups G in which the set [Formula: see text] has at most three elements. We also compute the set [Formula: see text] in most cases.


2020 ◽  
Vol 76 (1) ◽  
pp. 7-23
Author(s):  
Miles A. Clemens ◽  
Branton J. Campbell ◽  
Stephen P. Humphries

The tabulation of normal subgroups of 3D crystallographic space groups that are themselves 3D crystallographic space groups (csg's) is an ambitious goal, but would have a variety of applications. For convenience, such subgroups are referred to as `csg-normal' while normal subgroups of the crystallographic point group (cpg) of a crystallographic space group are referred to as `cpg-normal'. The point group of a csg-normal subgroup must be a cpg-normal subgroup. The present work takes a significant step towards that goal by tabulating the translational subgroups (a.k.a. sublattices) that are capable of supporting csg-normal subgroups. Two necessary conditions are identified on the relative sublattice basis that must be met in order for the sublattice to support csg-normal subgroups: one depends on the operations of the point group of the space group, while the other depends on the operations of the cpg-normal subgroup. Sublattices that meet these conditions are referred to as `normally supportive'. For each cpg-normal subgroup (excluding the identity subgroup 1) of each of the arithmetic crystal classes of 3D space groups, all of the normally supportive sublattices have been tabulated in symbolic form, such that most of the entries in the table contain one or more integer variables of infinite range; thus it could be more accurately described as a table of the infinite families of normally supportive sublattices. For a given pair of cpg-normal subgroup and normally supportive sublattice, csg-normal subgroups of the space groups of the parent arithmetic crystal class can be constructed via group extension, though in general such a pair does not guarantee the existence of a corresponding csg-normal subgroup.


1984 ◽  
Vol 27 (1) ◽  
pp. 7-9 ◽  
Author(s):  
G. Karpilovsky

In what follows, character means irreducible complex character.Let G be a finite group and let % be a character of a normal subgroup N. If χ extends to a character of G then χ is stabilised by G, but the converse is false. The aim of this paper is to prove the following theorem which gives a sufficient condition for χ to be extended to a character of G.


Sign in / Sign up

Export Citation Format

Share Document