scholarly journals EFFECT OF KINETIC RETURN ANKLE FOOT ORTHOSIS IN PATIENT WITH INCOMPLETE SPINAL CORD INJURY: CHANGES OF THE GAIT PATTERN. A CASE REPORT

2016 ◽  
Vol 2 (101) ◽  
pp. 8-16
Author(s):  
Margot Bergmann ◽  
Mari Alvela ◽  
Priit Eelmäe ◽  
Doris Vahtrik ◽  
Helena Gapeyeva

Background. The variety of orthotics available induces a purpose for estimation of their influence of functional mobility for individual needs in people with incomplete spinal cord injuries (ISCI). The aim of the study was to investigate the effect of the use of kinetic return ankle foot orthosis (KRAFO) on gait pattern in case of ISCI. Methods. Ankle and knee joint kinematic and kinetic characteristics during gait with and without KRAFO were studied in a 34-year-old man with ISCI (fracture v.C5) using 3D motion analysis system (Vicon Motion Systems Ltd., UK) including two dynamographic platforms (AMTI, USA). Ankle and knee joint angles at initial contact and mid-stance, ankle dorsiflexion and foot progression angle in swing phase and ankle joint push-off values in stance phase were analysed. Results. An excessive dorsiflexion in right ankle joint at initial contact, in mid-stance and in swing-phase occurred when walking without the orthosis, which decreased (105, 57 and 73%, respectively, p < .01) with the use of KRAFO. Orthoses use evoked the decrease (77%, p < .01) in peak foot progression angle. Ankle joint peak push- off power was low without the use of KRAFO and decreased even more (28%, p < .05) with the use of orthosis. Decreases of knee joint flexion angle at initial contact and in mid-stance (29 and 23%, respectively) with the use of KRAFO were not significant as compared to gait without orthosis. Conclusions. Walking with KRAFO improved ankle and knee joint stability, providing a decrease in ankle kinematic characteristics but ankle joint push-off power did not change. Further studies are needed to compare the effect of KRAFO in comparison with other orthoses on gait pattern in case of ISCI in accordance with the patient- centric approach for rehabilitation process management.

2011 ◽  
Vol 8 (3-4) ◽  
pp. 377-384 ◽  
Author(s):  
Jungyoon Kim ◽  
Sungjae Hwang ◽  
Ryanghee Sohn ◽  
Younghee Lee ◽  
Youngho Kim

We developed an active ankle-foot orthosis (AAFO) that controls dorsiflexion/plantarflexion of the ankle joint to prevent foot drop and toe drag during hemiplegic walking. To prevent foot slap after initial contact, the ankle joint must remain active to minimize forefoot collision against the ground. During late stance, the ankle joint must also remain active to provide toe clearance and to aid with push-off. We implemented a series elastic actuator in our AAFO to induce ankle dorsiflexion/plantarflexion. The activator was controlled by signals from force sensing register (FSR) sensors that detected gait events. Three dimensional gait analyses were performed for three hemiplegic patients under three different gait conditions: gait without AFO (NAFO), gait with a conventional hinged AFO that did not control the ankle joint (HAFO), and gait with the newly-developed AFO (AAFO). Our results demonstrate that our newly-developed AAFO not only prevents foot drop by inducing plantarflexion during loading response, but also prevents toe drag by facilitating plantarflexion during pre-swing and dorsiflexion during swing phase, leading to improvement in most temporal-spatial parameters. However, only three hemiplegic patients were included in this gait analysis. Studies including more subjects will be required to evaluate the functionality of our newly developed AAFO.


2015 ◽  
Vol 40 (3) ◽  
pp. 377-383 ◽  
Author(s):  
Mokhtar Arazpour ◽  
Alireza Moradi ◽  
Mohammad Samadian ◽  
Mahmood Bahramizadeh ◽  
Mahmoud Joghtaei ◽  
...  

Background:Traditionally, the anatomical knee joint is locked in extension when walking with a conventional knee–ankle–foot orthosis. A powered knee–ankle–foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait.Objective:The purpose of this study was to determine differences of the powered knee–ankle–foot orthosis compared to a locked knee–ankle–foot orthosis in kinematic data and temporospatial parameters during ambulation.Study design:Quasi—experimental design.Methods:Subjects with poliomyelitis (n = 7) volunteered for this study and undertook gait analysis with both the powered and the conventional knee–ankle–foot orthoses. Three trials per orthosis were collected while each subject walked along a 6-m walkway using a calibrated six-camera three-dimensional video-based motion analysis system.Results:Walking with the powered knee–ankle–foot orthosis resulted in a significant reduction in both walking speed and step length (both 18%), but a significant increase in stance phase percentage compared to walking with the conventional knee–ankle–foot orthosis. Cadence was not significantly different between the two test conditions ( p = 0.751). There was significantly higher knee flexion during swing phase and increased hip hiking when using the powered orthosis.Conclusion:The new powered orthosis permitted improved knee joint kinematic for knee–ankle–foot orthosis users while providing knee support in stance and active knee motion in swing in the gait cycle. Therefore, the new powered orthosis provided more natural knee flexion during swing for orthosis users compared to the locked knee–ankle–foot orthosis.Clinical relevanceThis orthosis has the potential to improve knee joint kinematics and gait pattern in poliomyelitis subjects during walking activities.


1997 ◽  
Vol 21 (3) ◽  
pp. 210-221 ◽  
Author(s):  
G. Baardman ◽  
M. J. Ijzerman ◽  
H. J. Hermen ◽  
P. H. Veltink ◽  
H. B. K. Boom ◽  
...  

The effect of reciprocally linking the hip hinges of a hip-knee-ankle-foot orthosis on standing performance was studied in a comparative trial of the Advanced Reciprocating Gait Orthosis (ARGO) and an ARGO in which the Bowden cable was removed (A_GO). Six male subjects with spinal cord injury (SCI) at T4 to T12 level participated in the study, which was conducted using a single case experimental design. Standing balance, the ability to handle balance disturbances (standing stability), and the performance of a functional hand task during standing were assessed in both orthosis configurations in the order A_GO-ARGO-A_GO-ARGO. No significant differences with respect to standing performance were found for the two orthosis configurations. However, the results indicate that the crutch force needed for maintaining balance during various tasks, especially for quiet standing with two crutches, may be much higher in the orthosis without Bowden cable. Therefore, it is very likely that the reciprocal hip joint link in the ARGO provides a substantial and clinically relevant reduction of upper body effort required for standing under functional conditions.


2018 ◽  
Vol 7 (4) ◽  
pp. 2236 ◽  
Author(s):  
Ayad M. Takhakh ◽  
Saif M. Abbas

Knee ankle foot orthoses (KAFOs) are used by paraplegia patients with low level spinal cord injury and having well control of the stem muscles. Four layers of carbon fiber with C- orthocryl lamination resin are used for manufacturing the knee ankle foot orthoses in this work. The mechanical properties of most of the components materials were estimated with the aid of fatigue and tensile test machines. Results of the tensile tests showed that the mechanical properties: yield stress, ultimate strength and modulus of elasticity were 92MPa, 105.7MPa and 2GPa respectively. The value of amidst pressure between the patient limb and the manufactured KAFO was measured using (F-socket) Mat scan sensor and these values of pressure were (663kPa) and (316kPa) for the thigh and calf regions respectively. 


2017 ◽  
Vol 29 (4) ◽  
pp. 177-182
Author(s):  
Masoud Rafiaei ◽  
Mokhtar Arazpour ◽  
Mahmood Bahramizadeh ◽  
Farzam Farahmand ◽  
Nima Jamshidi ◽  
...  

1982 ◽  
Vol 6 (2) ◽  
pp. 111-115 ◽  
Author(s):  
Y. Morinaka ◽  
Y. Matsuo ◽  
M. Nojima ◽  
S. Morinaka

A knee-ankle-foot-orthosis has been developed that incorporates a genucentric knee joint and a similarly designed ankle joint. Its design is discussed and a clinical evaluation of its use on twenty five hemiplegic patients is presented.


Author(s):  
Feng Tian ◽  
Mohamed Samir Hefzy ◽  
Mohammad Elahinia

A knee-ankle-foot orthosis (KAFO), which covers the knee, ankle and foot, can mitigate abnormal walking pattern caused by weak quadriceps. Several types of KAFOs are currently available in the market: passive KAFOs, stance-control KAFOs and dynamic KAFOs. In passive KAFOs, the knee joint keeps being locked during standing and walking, and can be unlocked manually to allow free rotation for sitting. Stance-control KAFOs (SCKAFOs) allow free knee motion during swing phase when the braced leg is unloaded. Dynamic KAFOs are able to reproduce normal walking ability throughout whole gait cycle. This research is directed at using superelastic alloys to develop a dynamic knee actuator that can be mounted on a traditional passive KAFO. The actuator stiffness can match that of a normal knee joint during the walking gait cycle. This proposed knee actuator utilizes a storing-releasing energy method to apply functional compensation to the knee joint, controlling the knee joint during both stance and swing phases. Fundamentally, the knee actuator is composed of two distinct parts which are connected with the thigh and shank segments, respectively. There are two superelastic actuators that are housed within these two parts and activated independently. Each actuator is developed by combining a superelastic rod and a rotary spring in series. When neither actuator is engaged, the knee joint is allowed to rotate freely. The stance actuator works only in the stance phase and the swing actuator is active for the swing phase. The conceptual design of the knee actuator is verified using numerical simulation and a prototype is developed through additive manufacturing for confirming the concept.


2021 ◽  
Vol 11 (11) ◽  
pp. 1512
Author(s):  
Yusuke Sekiguchi ◽  
Keita Honda ◽  
Dai Owaki ◽  
Shin-Ichi Izumi

Categorization based on quasi-joint stiffness (QJS) may help clinicians select appropriate ankle foot orthoses (AFOs). The objectives of the present study were to classify the gait pattern based on ankle joint stiffness, also called QJS, of the gait in patients after stroke and to clarify differences in the type of AFO among 72 patients after stroke. Hierarchical cluster analysis was used to classify gait patterns based on QJS at least one month before the study, which revealed three distinct subgroups (SGs 1, 2, and 3). The proportion of use of AFOs, articulated AFOs, and non-articulated AFOs were significantly different among SGs 1–3. In SG1, with a higher QJS in the early and middle stance, the proportion of the patients using articulated AFOs was higher, whereas in SG3, with a lower QJS in both stances, the proportion of patients using non-articulated AFOs was higher. In SG2, with a lower QJS in the early stance and higher QJS in the middle stance, the proportion of patients using AFOs was lower. These findings indicate that classification of gait patterns based on QJS in patients after stroke may be helpful in selecting AFO. However, large sample sizes are required to confirm these results.


Sign in / Sign up

Export Citation Format

Share Document