scholarly journals Single-crystal investigation of the compound SmNi5.2Mn6.8

2020 ◽  
Vol 75 (3) ◽  
pp. 303-307
Author(s):  
Bohdana Belan ◽  
Dorota Kowalska ◽  
Mykola Manyako ◽  
Mariya Dzevenko ◽  
Yaroslav Kalychak

AbstractThe intermetallic compound SmNi5.2Mn6.8 was synthesized by arc-melting and its crystal structure has been determined using single-crystal X-ray diffraction data. The compound adopts the tetragonal structure type ThMn12: space group I4/mmm, Pearson code tI26, Z = 2; a = 8.6528(3), c = 4.8635(3) Å; R1 = 0.0175, wR2 = 0.0372, 171 F2 values, 17 refined variables. The two crystallographic positions 8f and 8j in the structure of SmNi5.2Mn6.8 are occupied by a mixture of Mn and Ni atoms.

2019 ◽  
Vol 74 (3) ◽  
pp. 289-295 ◽  
Author(s):  
Nataliya Gulay ◽  
Yuriy Tyvanchuk ◽  
Marek Daszkiewicz ◽  
Bohdan Stel’makhovych ◽  
Yaroslav Kalychak

AbstractTwo compounds in the Sc-Co-In system were obtained by arc-melting of the pure metals and their crystal structures have been determined using single crystal X-ray diffraction data. The structure of Sc3Co1.64In4 (space group P6̅, а=7.6702(5), c=3.3595(2) Å, Z=1, R1=0.0160, wR2=0.0301) belongs to the Lu3Co2−xIn4 type structure, which is closely related to the ZrNiAl and Lu3CoGa5 types. The structure of Sc10Co9In20 (space group P4/nmm, а=12.8331(1), c=9.0226(1) Å, Z=2, R1=0.0203, wR2=0.0465) belongs to the Ho10Ni9In20 type, which is closely related to HfNiGa2.


2021 ◽  
Vol 76 (3-4) ◽  
pp. 243-247
Author(s):  
Bohdana Belan ◽  
Tamara J. Bednarchuk ◽  
Vasyl Kinzhybalo ◽  
Mariya Dzevenko ◽  
Svitlana Pukas ◽  
...  

Abstract The intermetallic compound LaNi11.8–11.4Si1.2–1.6 was synthesized by arc-melting and its crystal structure was determined using powder and single-crystal X-ray diffraction data. The compound adopts the cubic CaCu6.5Al6.5-type structure (space group Fm 3 ‾ $\bar{3}$ c, Pearson code cF112, Z = 8), which is a partially ordered ternary derivative of the NaZn13 type: a = 11.256(4) Å, V = 1426.1(15) Å3, R = 0.0133, wR = 0.0285 for 93 reflections with I > 2 σ(I) for LaNi11.4Si1.6; a = 11.25486(8) Å, V = 1425.68(2) Å3, R p = 4.17%, R wp = 5.85%, R B = 3.44% for LaNi11.8Si1.2. One of its crystallographic positions (96i) is occupied by a mixture of Ni and Si atoms. The structure of this new silicide can be represented as a packing of Ni-centered icosahedra and La-centered snub cubes, which are packed in a CsCl-related manner.


2020 ◽  
Vol 75 (8) ◽  
pp. 765-768
Author(s):  
Bohdana Belan ◽  
Dorota Kowalska ◽  
Mariya Dzevenko ◽  
Mykola Manyako ◽  
Roman Gladyshevskii

AbstractThe crystal structure of the phase Ce5AgxGe4−x (x = 0.1−1.08) has been determined using single-crystal X-ray diffraction data for Ce5Ag0.1Ge3.9. This phase is isotypic with Sm5Ge4: space group Pnma (No. 62), Pearson code oP36, Z = 4, a = 7.9632(2), b = 15.2693(5), c = 8.0803(2) Å; R1 = 0.0261, wR2 = 0.0460, 1428 F2 values and 48 variables. The two crystallographic positions 8d and 4c show Ge/Ag mixing, leading to a slight increase in the lattice parameters as compared to those of the pure binary compound Ce5Ge4.


Author(s):  
Gohil S. Thakur ◽  
Hans Reuter ◽  
Claudia Felser ◽  
Martin Jansen

The crystal structure redetermination of Sr2PdO3 (distrontium palladium trioxide) was carried out using high-quality single-crystal X-ray data. The Sr2PdO3 structure has been described previously in at least three reports [Wasel-Nielen & Hoppe (1970). Z. Anorg. Allg. Chem. 375, 209–213; Muller & Roy (1971). Adv. Chem. Ser. 98, 28–38; Nagata et al. (2002). J. Alloys Compd. 346, 50–56], all based on powder X-ray diffraction data. The current structure refinement of Sr2PdO3, as compared to previous powder data refinements, leads to more precise cell parameters and fractional coordinates, together with anisotropic displacement parameters for all sites. The compound is confirmed to have the orthorhombic Sr2CuO3 structure type (space group Immm) as reported previously. The structure consists of infinite chains of corner-sharing PdO4 plaquettes interspersed by SrII atoms. A brief comparison of Sr2PdO3 with the related K2NiF4 structure type is given.


Author(s):  
Takashi Mochiku ◽  
Yoshitaka Matsushita ◽  
Nikola Subotić ◽  
Takanari Kashiwagi ◽  
Kazuo Kadowaki

RhPb2 (rhodium dilead) is a superconductor crystallizing in the CuAl2 structure type (space group I4/mcm). The Rh and Pb atoms are located at the 4a (site symmetry 422) and 8h (m.2m) sites, respectively. The crystal structure is composed of [RhPb8] antiprisms, which share their square faces along the c axis and the edges in the direction perpendicular to the c axis. We have succeeded in growing single crystals of RhPb2 and have re-determined the crystal structure on basis of single-crystal X-ray diffraction data. In comparison with the previous structure studies using powder X-ray diffraction data [Wallbaum (1943). Z. Metallkd. 35, 218–221; Havinga et al. (1972). J. Less-Common Met. 27, 169–186], the current structure analysis of RhPb2 leads to more precise unit-cell parameters and fractional coordinates, together with anisotropic displacement parameters for the two atoms. In addition and likewise different from the previous studies, we have found a slight deficiency of Rh in RhPb2, leading to a refined formula of Rh0.950 (9)Pb2.


2020 ◽  
Vol 86 (5) ◽  
pp. 3-12
Author(s):  
Bohdana Belan ◽  
Mykola Manyako ◽  
Mariya Dzevenko ◽  
Dorota Kowalska ◽  
Roman Gladyshevskii

The new ternary silicide Lu3Ni11.74(2)Si4 was synthesized from the elements by arc-melting and its crystal structure was determined by the single-crystal X-ray diffraction. The compound crystallizes in the Sc3Ni11Ge4-type: Pearson symbol hP37.2, space group P63/mmc (No. 194), a = 8.0985(16), c = 8.550(2) Å, Z = 2; R = 0.0244, wR = 0.0430 for 244 reflections. The silicide Lu3Ni11.74(2)Si4 is new member of the EuMg5.2-type structure family.


IUCrData ◽  
2019 ◽  
Vol 4 (11) ◽  
Author(s):  
Artem V. Malin ◽  
Sergei I. Ivlev ◽  
Roman V. Ostvald ◽  
Florian Kraus

Single crystals of rubidium tetrafluoridobromate(III), RbBrF4, were grown by melting and recrystallizing RbBrF4 from its melt. This is the first determination of the crystal structure of RbBrF4 using single-crystal X-ray diffraction data. We confirmed that the structure contains square-planar [BrF4]− anions and rubidium cations that are coordinated by F atoms in a square-antiprismatic manner. The compound crystallizes in the KBrF4 structure type. Atomic coordinates and bond lengths and angles were determined with higher precision than in a previous report based on powder X-ray diffraction data [Ivlev et al. (2015). Z. Anorg. Allg. Chem. 641, 2593–2598].


2020 ◽  
Vol 151 (9) ◽  
pp. 1317-1328
Author(s):  
Matthias Weil ◽  
Berthold Stöger

Abstract The caesium phosphates Cs3(H1.5PO4)2(H2O)2 and Cs3(H1.5PO4)2 were obtained from aqueous solutions, and Cs4P2O7(H2O)4 and CsPO3 from solid state reactions, respectively. Cs3(H1.5PO4)2, Cs4P2O7(H2O)4, and CsPO3 were fully structurally characterized for the first time on basis of single-crystal X-ray diffraction data recorded at − 173 °C. Monoclinic Cs3(H1.5PO4)2 (Z = 2, C2/m) represents a new structure type and comprises hydrogen phosphate groups involved in the formation of a strong non-symmetrical hydrogen bond (accompanied by a disordered H atom over a twofold rotation axis) and a very strong symmetric hydrogen bond (with the H atom situated on an inversion centre) with symmetry-related neighbouring anions. Triclinic Cs4P2O7(H2O)4 (Z = 2, P$$\bar{1}$$ 1 ¯ ) crystallizes also in a new structure type and is represented by a diphosphate group with a P–O–P bridging angle of 128.5°. Although H atoms of the water molecules were not modelled, O···O distances point to hydrogen bonds of medium strengths in the crystal structure. CsPO3 is monoclinic (Z = 4, P21/n) and belongs to the family of catena-polyphosphates (MPO3)n with a repetition period of 2. It is isotypic with the room-temperature modification of RbPO3. The crystal structure of Cs3(H1.5PO4)2(H2O)2 was re-evaluated on the basis of single-crystal X-ray diffraction data at − 173 °C, revealing that two adjacent hydrogen phosphate anions are connected by a very strong and non-symmetrical hydrogen bond, in contrast to the previously described symmetrical bonding situation derived from room temperature X-ray diffraction data. In the four title crystal structures, coordination numbers of the caesium cations range from 7 to 12. Graphic abstract


2013 ◽  
Vol 69 (12) ◽  
pp. i84-i84 ◽  
Author(s):  
Aicha Mbarek ◽  
Fadhila Edhokkar

The crystal structure of strontium diarsenate has been reinvestigated from single-crystal X-ray diffraction data. In contrast to the previous determinations of this structure [Weilet al.(2009).Solid State Sci.11, 2111–2117; Edhokkaret al.(2012).Mater. Sci. Eng.,28, 012017] and to all isotypicA2B2O7compounds that crystallize in the space groupP41, the current redetermination revealed theP43enantiomorph of Sr2As2O7with a purity of 96.3 (8)%. The crystal structure is made up from two eclipsed As2O7diarsenate groups (symmetry 1) with characteristically longer As—O bridging bonds [1.756 (4)–1.781 (4) Å] than the terminal As—O bonds [1.636 (4)–1.679 (4) Å] and four Sr2+sites with coordination numbers ranging from seven to nine. The building units are arranged in sheets parallel to (001).


1987 ◽  
Vol 42 (7) ◽  
pp. 828-834 ◽  
Author(s):  
W. Frank ◽  
B. Dincher

Abstract The crystalline compounds [(CH3C6H5)2Hg,][AlCl4]2 (1), [(1,2-(CH3)2C6H4)2Hg2][AlCl4]2(2), [(1,3,5-(CH3)3C6H3)2Hg2][AlCl4]2 (3), [1,2,4,5-(CH3)4C6H2Hg2][AlCl4]2 (4) and [((CH3)6C6)2Hg2][AlCl4]2-CH3C6H5 (5) have been prepared from mercury(I)chloride, aluminium trichloride and the corresponding arenes and characterized by elem ental analysis. The crystal structure of 5 has been determ ined from single crystal X-ray diffraction data and refined to R - 0.093 for 3269 unique reflections. Crystal data: monoclinic, space group P21/c, a = 2116(1), b = 1095.1(7), c = 1880(1) pm, β - 104,9(1)°, Z = 4. Each atom of a central Hg2 unit (Hg -Hg distance 251.5 pm) is asymmetrically complexed by hexamethylbenzene, the Hg - Carene distances being in the range from 241 to 340 pm. Two distorted AlCl4 tetrahedra complete a “molecular” [arene2Hg2][AlCl4]2 unit. The shortest Hg-Cl distances are 310 and 312 pm, respectively.


Sign in / Sign up

Export Citation Format

Share Document