Crystal structure of LnCuSn (Ln = Nd, Sm, Gd)

Author(s):  
J. V. Pacheco ◽  
K. Yvon ◽  
E. Gratz

AbstractThe title compounds were reinvestigated by single crystal X-ray diffraction. They crystallize with the ordered NdPtSb type structure (space group

2020 ◽  
Vol 86 (5) ◽  
pp. 3-12
Author(s):  
Bohdana Belan ◽  
Mykola Manyako ◽  
Mariya Dzevenko ◽  
Dorota Kowalska ◽  
Roman Gladyshevskii

The new ternary silicide Lu3Ni11.74(2)Si4 was synthesized from the elements by arc-melting and its crystal structure was determined by the single-crystal X-ray diffraction. The compound crystallizes in the Sc3Ni11Ge4-type: Pearson symbol hP37.2, space group P63/mmc (No. 194), a = 8.0985(16), c = 8.550(2) Å, Z = 2; R = 0.0244, wR = 0.0430 for 244 reflections. The silicide Lu3Ni11.74(2)Si4 is new member of the EuMg5.2-type structure family.


2021 ◽  
Vol 76 (3-4) ◽  
pp. 243-247
Author(s):  
Bohdana Belan ◽  
Tamara J. Bednarchuk ◽  
Vasyl Kinzhybalo ◽  
Mariya Dzevenko ◽  
Svitlana Pukas ◽  
...  

Abstract The intermetallic compound LaNi11.8–11.4Si1.2–1.6 was synthesized by arc-melting and its crystal structure was determined using powder and single-crystal X-ray diffraction data. The compound adopts the cubic CaCu6.5Al6.5-type structure (space group Fm 3 ‾ $\bar{3}$ c, Pearson code cF112, Z = 8), which is a partially ordered ternary derivative of the NaZn13 type: a = 11.256(4) Å, V = 1426.1(15) Å3, R = 0.0133, wR = 0.0285 for 93 reflections with I > 2 σ(I) for LaNi11.4Si1.6; a = 11.25486(8) Å, V = 1425.68(2) Å3, R p = 4.17%, R wp = 5.85%, R B = 3.44% for LaNi11.8Si1.2. One of its crystallographic positions (96i) is occupied by a mixture of Ni and Si atoms. The structure of this new silicide can be represented as a packing of Ni-centered icosahedra and La-centered snub cubes, which are packed in a CsCl-related manner.


1993 ◽  
Vol 48 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Michael Schneider ◽  
Peter Kuske ◽  
Heinz Dieter Lutz

The crystal structures of the fast ionic conductors Li6MgBr8 and Li2MgBr4 oC 14 and cF 56 were determined by single crystal X -ray diffraction and neutron powder studies, respectively. At ambient temperature, Li6MBr8 (M = Mg, Mn) crystallize in a Suzuki-type structure (space group Fm3̄̄̄ m , Z = 4, Li6MgBr8: a = 1098.0(1) pm, 114 unique reflections, R = 0.037). Li2MgBr4 oC 14 crystallizes in a SnMn2S4-type structure (space group Cmmm , Z = 2, a = 777.94(2), b = 1104.25(4), and c = 386.55(1) pm , RI, = 0.073, 318 K), the high-temperature polymorph (HTM I) in the Li2MnBr4 cF 56 type (space group Fd 3 m , Z = 8, a = 1124.55(4) pm , RI , = 0.052, 673 K). These structure types are more or less ordered NaCl superstructures. The thermal ellipsoids of the lithium ions are discussed in terms of the conduction pathways and the order-disorder phase transitions observed.


Author(s):  
Süheyla Özbey ◽  
F. B. Kaynak ◽  
M. Toğrul ◽  
N. Demirel ◽  
H. Hoşgören

AbstractA new type of inclusion complex, S(–)-1 phenyl ethyl ammonium percholorate complex of R-(–)-2-ethyl - N - benzyl - 4, 7, 10, 13 - tetraoxa -1- azacyclopentadecane, has been prepared and studied by NMR, IR and single crystal X-ray diffraction techniques. The compound crystallizes in space group


2020 ◽  
Vol 75 (8) ◽  
pp. 765-768
Author(s):  
Bohdana Belan ◽  
Dorota Kowalska ◽  
Mariya Dzevenko ◽  
Mykola Manyako ◽  
Roman Gladyshevskii

AbstractThe crystal structure of the phase Ce5AgxGe4−x (x = 0.1−1.08) has been determined using single-crystal X-ray diffraction data for Ce5Ag0.1Ge3.9. This phase is isotypic with Sm5Ge4: space group Pnma (No. 62), Pearson code oP36, Z = 4, a = 7.9632(2), b = 15.2693(5), c = 8.0803(2) Å; R1 = 0.0261, wR2 = 0.0460, 1428 F2 values and 48 variables. The two crystallographic positions 8d and 4c show Ge/Ag mixing, leading to a slight increase in the lattice parameters as compared to those of the pure binary compound Ce5Ge4.


2017 ◽  
Vol 72 (12) ◽  
pp. 983-988 ◽  
Author(s):  
Martin K. Schmitt ◽  
Hubert Huppertz

Abstractβ-Y(BO2)3 was synthesized in a Walker-type multianvil module at 5.9 GPa/1000°C. The crystal structure has been elucidated through single-crystal X-ray diffraction. β-Y(BO2)3 crystallizes in the orthorhombic space group Pnma (no. 62) with the lattice parameters a=15.886(2), b=7.3860(6), and c=12.2119(9) Å. Its crystal structure will be discussed in the context of the isotypic lanthanide borates β-Ln(BO2)3 (Ln=Nd, Sm, Gd–Lu).


2002 ◽  
Vol 57 (1) ◽  
pp. 43-46 ◽  
Author(s):  
Beatriz S. Parajón-Costaa ◽  
Enrique J. Baran ◽  
Oscar E. Piro ◽  
Eduardo E Castellano

The crystal structure of [Cu(sac)2(nic)2(H2O)] (sac = saccharinate anion; nic = nicotinamide) has been determined by single-crystal X-ray diffraction. It crystallizes in the monoclinic space group C2/c with Z = 4 and the Cu(II) ion presents a CuN4O square pyramidal coordination. Some comparisons with related structures are made and the most important features of its IR spectrum were also discussed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Myroslava Horiacha ◽  
Galyna Nychyporuk ◽  
Rainer Pöttgen ◽  
Vasyl Zaremba

Abstract Phase formation in the solid solution TbNiIn1−x Ga x at 873 K was investigated in the full concentration range by means of powder X-ray diffraction and EDX analysis. The samples were synthesized by arc-melting of the pure metals with subsequent annealing at 873 K for one month. The influence of the substitution of indium by gallium on the type of structure and solubility was studied. The solubility ranges have been determined and changes of the unit cell parameters were calculated on the basis of powder X-ray diffraction data: TbNiIn1–0.4Ga0–0.6 (ZrNiAl-type structure, space group P 6 ‾ 2 m $P‾{6}2m$ , a = 0.74461(8)–0.72711(17) and c = 0.37976(5)–0.37469(8) nm); TbNiIn0.2–0Ga0.8–1.0 (TiNiSi-type structure, space group Pnma, а = 0.68950(11)–0.68830(12), b = 0.43053(9)–0.42974(6), с = 0.74186(10)–0.73486(13) nm). The crystal structures of TbNiGa (TiNiSi type, Pnma, a = 0.69140(5), b = 0.43047(7), c = 0.73553(8) nm, wR2=0.0414, 525 F 2 values, 21 variables), TbNiIn0.83(1)Ga0.17(1) (ZrNiAl type, P 6 ‾ 2 m $P‾{6}2m$ , a = 0.74043(6), c = 0.37789(3) nm, wR2 = 0.0293, 322 F 2 values, 16 variables) and TbNiIn0.12(2)Ga0.88(2) (TiNiSi type, Pnma, a = 0.69124(6), b = 0.43134(9), c = 0.74232(11) nm, wR2 = 0.0495, 516 F 2 values, 21 variables) have been determined. The characteristics of the solid solutions and the variations of the unit cell parameters are briefly discussed.


1995 ◽  
Vol 50 (3) ◽  
pp. 439-447 ◽  
Author(s):  
Roland Köster ◽  
Günter Seidel ◽  
Roland Boese ◽  
Bernd Wrackmeyer

The exhaustive hydroboration of the (C ≡ C )-groups in Me2Si(C ≡ CMe)2 (A ) by adding ethyldiboranes(6) at room temperature is presumed to lead initially to the formation of a mixture of the threo- and erythro-3,3,5,6-tetrakis(diethylboryl)-4,4-dimethyl-4-silaheptanes (1a , b). The threo-1a reacts further by borane catalysed intermolecular condensation to the substituted disilatetraboratricyclo[6.2.1.16.9]dodecane 2 with the formula , whose crystal structure [space group C2/c, a = 19.696(2), b = 10.371(1), c = 16.580(2) Å; β = 125.90(1)°; at 122 K] has been established by X -ray diffraction. In contrast, the erythro-1b undergoes intramolecular, thermal elimination of Et3B to give the 1,2-diethyl-2,4-bis(diethylboryl)- 3,3,5-trim ethyl-3-silaborolane (4). If A is added to an excess of undiluted B (“hydridebath”), then the two substituted diastereomers of the 1-carba-arachno-pentaboranes(10) (endo/exo-Et,SiH Me2) (3a, b), are formed preferentially as the result of an initial Si-C ≡-c le a v e d hydroboration.


2008 ◽  
Vol 63 (5) ◽  
pp. 507-512 ◽  
Author(s):  
Henning W. Rohm ◽  
Martin Köckerling

Rb[(Zr6C)Cl15] was prepared by heating ZrCl4, Zr powder, RbCl and Al4C3 at 850 °C for 21 days. The crystal structure was determined by single crystal X-ray diffraction (space group Pmma, a = 18.484(3), b = 18.962(2), c = 9.708(1) Å, V = 2505.4(6) Å3, and Z = 4). Rb[(Zr6C)Cl15] crystallises in the Cs[Nb6Cl15]-type structure. It is built up from two interconnected types of cluster chains, one with linear Zr−Cla−a-Zr bridges, the other one with bent bridges. The rubidium cations are spread over three different sites within the cluster network which differs significantly from the cation distribution in the comparable potassium and caesium phases. The cation distribution can be rationalised considering the size of the cavities and the Coulombic interactions.


Sign in / Sign up

Export Citation Format

Share Document