scholarly journals The ecological function of intertidal shellfish reefs for benthic algae

2021 ◽  
Author(s):  
◽  
Rosy Andriana
1989 ◽  
Vol 21 (2) ◽  
pp. 205-210 ◽  
Author(s):  
B. L. Simmons ◽  
S. L. Trengove

Increasing urbanisation of coastal areas is leading to impacts on coastal lakes which decrease their amenity for recreation and tourism. Runoff and wastewater discharge cause siltation, impact seagrass beds and change the characteristics of open waters, affecting boating, swimming, fishing and the aesthetic quality of the locale. Management of urban development and wastewater disposal is required to minimise sedimentation and nutrient enrichment. This could include development restrictions, runoff controls and a strategy for wastewater treatment and discharge. The catchment of Lake Macquarie, a marine coastal lake, has been progressively urbanised since 1945. Urbanisation, through increased stormwater runoff and point source discharges, has caused a major impact on the lake in terms of sedimentation and nutrient enrichment. Losses of lake area and navigable waters have occurred. Accompanying problems include changes in the distribution of seagrass beds and nuisance growths of benthic algae. Since the 1950's, dry weather nutrient concentrations have increased and mean water clarity has decreased. Severe problems, as observed in other New South Wales coastal lakes, for example benthic algae in Lake Illawarra and Tuggerah Lakes, have not yet developed. Because of the lead time taken to implement policies and controls, trends should be identified and policies developed now so as to avoid nutrient buildup and development of sustained problems.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Xiaowei Liu ◽  
Lingen Chen ◽  
Yanlin Ge ◽  
Huijun Feng ◽  
Feng Wu ◽  
...  

AbstractBased on an irreversible quantum Carnot heat pump model in which spin-1/2 systems are used as working substance, an exergy-based ecological function and some other important parameters of the model heat pump are derived. Numerical examples are provided to investigate its ecological performance characteristics. The influences of various irreversibility factors on the ecological performance are discussed. Performance comparison and discussion among maximum points of ecological function, heating load, and so on, are conducted. At last, three special cases are discussed.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1497
Author(s):  
Vladimir Razlutskij ◽  
Xueying Mei ◽  
Natallia Maisak ◽  
Elena Sysova ◽  
Dzmitry Lukashanets ◽  
...  

Fish, being an important consumer in aquatic ecosystems, plays a significant role by affecting the key processes of aquatic ecosystems. Omnivorous fish consume a variety of food both from pelagic and benthic habitats and may directly or indirectly affect the plankton community as well as the lake trophic state. We conducted a 72-day outdoor experiment in mesocosms with and without Prussian carp (Carassius auratus) to evaluate the effect of this often-stocked omnivorous fish on the plankton community and water quality. We found that the presence of fish increased the biomass of planktonic algae, total and inorganic suspended solids, leading to decreased light intensity in the water and a lower biomass of benthic algae. Fish also prevented development of submerged macrophytes and the establishment of large-bodied zooplankton. However, the fish did not increase nitrogen concentrations and even was lowered total phosphorus levels, in part due to nutrient storage in the fish. We conclude that stocking of Prussian carp should be avoided, or removed where stocked and abundant, to obtain good ecological quality of shallow lakes, characterized by clear water and high abundance of macrophytes.


2021 ◽  
pp. 126449
Author(s):  
Yuan Hui ◽  
Zhenduo Zhu ◽  
Joseph F. Atkinson ◽  
Angshuman M. Saharia

2021 ◽  
Author(s):  
Elizabeth A. Leger ◽  
Alison C. Agneray ◽  
Owen W. Baughman ◽  
E. Charles Brummer ◽  
Todd E. Erickson ◽  
...  

2011 ◽  
Vol 10 ◽  
pp. 300-306 ◽  
Author(s):  
Li Guangyong ◽  
Li Xiaoyan ◽  
Jiang Cuihong ◽  
Lv Guohua

Sign in / Sign up

Export Citation Format

Share Document