lower biomass
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 33)

H-INDEX

12
(FIVE YEARS 3)

Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 295
Author(s):  
Tumisi Beiri Jeremiah Molelekoa ◽  
Thierry Regnier ◽  
Laura Suzanne da Silva ◽  
Wilma Augustyn

The food and pharmaceutical industries are searching for natural colour alternatives as required by consumers. Over the last decades, fungi have emerged as producers of natural pigments. In this paper, five filamentous fungi; Penicillium multicolour, P. canescens, P. herquie, Talaromyces verruculosus and Fusarium solani isolated from soil and producing orange, green, yellow, red and brown pigments, respectively, when cultured on a mixture of green waste and whey were tested. The culture media with varying pH (4.0, 7.0 and 9.0) were incubated at 25 °C for 14 days under submerged and solid-state fermentation conditions. Optimal conditions for pigment production were recorded at pH 7.0 and 9.0 while lower biomass and pigment intensities were observed at pH 4.0. The mycelial biomass and pigment intensities were significantly higher for solid-state fermentation (0.06–2.50 g/L and 3.78–4.00 AU) compared to submerged fermentation (0.220–0.470 g/L and 0.295–3.466 AU). The pigment intensities were corroborated by lower L* values with increasing pH. The λmax values for the pigments were all in the UV region. Finally, this study demonstrated the feasibility of pigment production using green waste:whey cocktails (3:2). For higher biomass and intense pigment production, solid-state fermentation may be a possible strategy for scaling up in manufacturing industries.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5286
Author(s):  
Lucía Grande ◽  
Ivan Pedroarena ◽  
Sophia A. Korili ◽  
Antonio Gil

The use of biofuels offers advantages over existing fuels because they come from renewable sources, they are biodegradable, their storage and transport are safer, and their emissions into the atmosphere are lower. Biomass is one of the most promising sustainable energy sources with a wide variety of organic materials as raw material. Chemical, biochemical, and thermochemical methods have been proposed to obtain biofuels from raw materials from biomass. In recent years, a thermochemical method that has generated great interest is hydrothermal liquefaction. In this paper, a brief review of the main sources for liquid biofuels and the synthesis processes is presented, with special emphasis on the production of biofuels using hydrothermal liquefaction by using waste generated by human activity as raw material.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5165
Author(s):  
Agata Krakowska ◽  
Witold Reczyński ◽  
Tomasz Krakowski ◽  
Karolina Szewczyk ◽  
Włodzimierz Opoka ◽  
...  

Agaricus bisporus (J.E. Lange) Imbach is one the most popular species of edible mushrooms in the world because of its taste and nutritional properties. In the research, repeatability of accumulation of bioelements and biomass yield in experimentally chosen in vitro culture medium, was confirmed. The in vitro cultures were conducted on the modified Oddoux medium enriched with bioelements (Mg, Zn, Cu, Fe). The aim of the study was to create an effective method of sampling, which enabled non-invasive monitoring of metals concentrations changes in the medium, during increase of biomass in in vitro cultures. The first, indirect method of sampling was applied. The non-invasive probe (a dipper) for in vitro culture was used; hence, the highest biomass increase and metals accumulation were gained. The method also guaranteed culture sterility. The second method, a direct one, interfered the in vitro culture conditions and growth of mycelium, and as a consequence the lower biomass increase and metals’ accumulation were observed. Few cases of contaminations of mycelium in in vitro cultures were observed. The proposed method of non-invasive sampling of the medium can be used to monitor changes in the concentrations of metals in the medium and their accumulation in the mycelium in natural environment. Changes in concentrations of the selected metals over time, determined by the method of atomic absorption spectrometry, made it possible to correlate the obtained results with the specific stages of A. bisporus mycelium development and to attempt to explain the mechanism of sampling metals from the liquid substrate.


Hydrobiologia ◽  
2021 ◽  
Author(s):  
Edwin M. A. Hes ◽  
Ruth Yatoi ◽  
Sadiki L. Laisser ◽  
Aster K. Feyissa ◽  
Kenneth Irvine ◽  
...  

AbstractWith growing demand for food production in Africa, protecting wetlands and combining increased agricultural production with conservation of the ecological integrity of wetlands is urgent. The role of aboveground biomass of papyrus (Cyperus papyrus) in the storage and retention of nitrogen (N) and phosphorus (P) was studied in two wetland sites in East Africa under seasonally and permanently flooded conditions. Nyando wetland (Kenya) was under anthropogenic disturbance from agriculture and vegetation harvesting, whereas Mara wetland (Tanzania) was less disturbed. Maximum papyrus culm growth was described well by a logistic model (regressions for culm length with R2 from 0.70 to 0.99), with culms growing faster but not taller in Nyando than in Mara. Maximum culm length was greater in permanently than in seasonally flooded zones. Total aboveground biomass was higher in Mara than in Nyando. The amounts of N and P stored were higher in Mara than in Nyando. In disturbed sites, papyrus plants show characteristics of r-selected species leading to faster growth but lower biomass and nutrient storage. These findings help to optimize management of nutrient retention in natural and constructed wetlands.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dinara Oshanova ◽  
Assylay Kurmanbayeva ◽  
Aizat Bekturova ◽  
Aigerim Soltabayeva ◽  
Zhadyrassyn Nurbekova ◽  
...  

Molybdenum cofactor containing sulfite oxidase (SO) enzyme is an important player in protecting plants against exogenous toxic sulfite. It was also demonstrated that SO activity is essential to cope with rising dark-induced endogenous sulfite levels and maintain optimal carbon and sulfur metabolism in tomato plants exposed to extended dark stress. The response of SO and sulfite reductase to direct exposure of low and high levels of sulfate and carbon was rarely shown. By employing Arabidopsis wild-type, sulfite reductase, and SO-modulated plants supplied with excess or limited carbon or sulfur supply, the current study demonstrates the important role of SO in carbon and sulfur metabolism. Application of low and excess sucrose, or sulfate levels, led to lower biomass accumulation rates, followed by enhanced sulfite accumulation in SO impaired mutant compared with wild-type. SO-impairment resulted in the channeling of sulfite to the sulfate reduction pathway, resulting in an overflow of organic S accumulation. In addition, sulfite enhancement was followed by oxidative stress contributing as well to the lower biomass accumulation in SO-modulated plants. These results indicate that the role of SO is not limited to protection against elevated sulfite toxicity but to maintaining optimal carbon and sulfur metabolism in Arabidopsis plants.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1497
Author(s):  
Vladimir Razlutskij ◽  
Xueying Mei ◽  
Natallia Maisak ◽  
Elena Sysova ◽  
Dzmitry Lukashanets ◽  
...  

Fish, being an important consumer in aquatic ecosystems, plays a significant role by affecting the key processes of aquatic ecosystems. Omnivorous fish consume a variety of food both from pelagic and benthic habitats and may directly or indirectly affect the plankton community as well as the lake trophic state. We conducted a 72-day outdoor experiment in mesocosms with and without Prussian carp (Carassius auratus) to evaluate the effect of this often-stocked omnivorous fish on the plankton community and water quality. We found that the presence of fish increased the biomass of planktonic algae, total and inorganic suspended solids, leading to decreased light intensity in the water and a lower biomass of benthic algae. Fish also prevented development of submerged macrophytes and the establishment of large-bodied zooplankton. However, the fish did not increase nitrogen concentrations and even was lowered total phosphorus levels, in part due to nutrient storage in the fish. We conclude that stocking of Prussian carp should be avoided, or removed where stocked and abundant, to obtain good ecological quality of shallow lakes, characterized by clear water and high abundance of macrophytes.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jose J. De Vega ◽  
Ned Peel ◽  
Sarah J. Purdy ◽  
Sarah Hawkins ◽  
Lain Donnison ◽  
...  

Abstract Background Miscanthus is a commercial lignocellulosic biomass crop owing to its high biomass productivity and low chemical input requirements. Within an interspecific Miscanthus cross, progeny with high biomass yield were shown to have low concentrations of starch and sucrose but high concentrations of fructose. We performed a transcriptional RNA-seq analysis between selected Miscanthus hybrids with contrasting values for these phenotypes to clarify how these phenotypes are genetically controlled. Results We observed that genes directly involved in the synthesis and degradation of starch and sucrose were down-regulated in high-yielding Miscanthus hybrids. At the same time, glycolysis and export of triose phosphates were up-regulated in high-yielding Miscanthus hybrids. These differentially expressed genes and biological functions were regulated by a well-connected network of less than 25 co-regulated transcription factors. Conclusions Our results evidence a direct relationship between high expression of essential enzymatic genes in the starch and sucrose pathways and co-expression with their transcriptional regulators, with high starch concentrations and lower biomass production. The strong interconnectivity between gene expression and regulators, chemotype and agronomic traits opens the door to use the expression of well-characterised genes associated with carbohydrate metabolism, particularly in the starch and sucrose pathway, for the early selection of high biomass-yielding genotypes from large Miscanthus populations.


2021 ◽  
Author(s):  
Chris Wells ◽  
Apostolos Voulgarakis

<p>Aerosols are a major climate forcer, but their historical effect has the largest uncertainty of any forcing; their mechanisms and impacts are not well understood. Due to their short lifetime, aerosols have large impacts near their emission region, but they also have effects on the climate in remote locations. In recent years, studies have investigated the influences of regional aerosols on global and regional climate, and the mechanisms that lead to remote responses to their inhomogeneous forcing. Using the Shared Socioeconomic Pathway scenarios (SSPs), transient future experiments were performed in UKESM1, testing the effect of African emissions following the SSP3-RCP7.0 scenario as the rest of the world follows SSP1-RCP1.9, relative to a global SSP1-RCP1.9 control. SSP3 sees higher direct anthropogenic aerosol emissions, but lower biomass burning emissions, over Africa. Experiments were performed changing each of these sets of emissions, and both. A further set of experiments additionally accounted for changing future CO<sub>2</sub> concentrations, to investigate the impact of CO<sub>2</sub> on the responses to aerosol perturbations. Impacts on radiation fluxes, temperature, circulation and precipitation are investigated, both over the emission region (Africa), where microphysical effects dominate, and remotely, where dynamical influences become more relevant. </p>


2021 ◽  
Author(s):  
Allan Raffard ◽  
Julie Campana ◽  
Delphine Legrand ◽  
Nicolas Schtickzelle ◽  
Staffan Jacob

AbstractDispersal is a key process mediating ecological and evolutionary dynamics. Its effects on metapopulations dynamics, population genetics or species range distribution can depend on phenotypic differences between dispersing and non-dispersing individuals (i.e., dispersal syndromes). However, scaling up to the importance of dispersal syndromes for meta-ecosystems have rarely been considered, despite intraspecific phenotypic variability is now recognised as an important factor mediating ecosystem functioning. In this study, we characterised the intraspecific variability of dispersal syndromes in twenty isolated genotypes of the ciliate Tetrahymena thermophila to test their consequences for biomass productivity in communities composed of five Tetrahymena species. To do so, dispersers and residents of each genotype were introduced, each separately, in ciliate communities composed of four other competing species of the genus Tetrahymena to investigate the effects of dispersal syndromes. We found that introducing dispersers led to a lower biomass compared to introducing residents. This effect was highly consistent across the twenty T. thermophila genotypes despite their marked differences of dispersal syndromes. Finally, we found a strong genotypic effect on biomass production, confirming that intraspecific variability in general affected ecosystem functions in our system. Our study shows that intraspecific variability and the existence of dispersal syndromes can impact the functioning of spatially structured ecosystems in a consistent and therefore predictable way.


Sign in / Sign up

Export Citation Format

Share Document