scholarly journals Pola Beli Konsumen Menggunakan Algoritma Fp-Growth Untuk Rekomendasi Promosi Pada Aneka Jaya Motor

2021 ◽  
Vol 6 (1) ◽  
pp. 48-55
Author(s):  
Junta Zeniarja

A piece of appropriate information can create and establish a business strategy in increasing sales through technology that can affect the trade-in buying and selling goods with the data information generated can be calculated in detail and accurately. At Aneka Jaya Motor Semarang, this was triggered by the demand for competition. One solution is a product promotion target. For determining which items are feasible for promotion, the application of a promotional decision recommendation system is made using data mining techniques associated with FP-Growth algorithms, its function is to find items that are often purchased simultaneously by consumers. Data used in the form of transaction data with the total amount used 501 data. The results obtained by appearing 1 rule is if consumers buy spark plug parts then buy oil parts with minimum support of 10% and minimum confidence of 35%. The lift ratio obtained is 1 so that valid rules are generated.

2019 ◽  
Vol 2 (2) ◽  
pp. 63-73
Author(s):  
Nurul Azwanti

Raffa Photocopy is a shop that started its business in 2016. This business not only provides photocopy services, but also provides office stationery and school supplies. Every day there are sales transactions where the recording of goods sold has a relationship between one another, because in recording sometimes consumers do not just buy one item, but two items even more as when buying a book, it is likely that consumers also buy a pen. This recording is only stored as an archive by Raffa Photocopy, even though the number of sales transactions that occur every day can lead to a pile of data. One effort to increase sales at Raffa Photocopy can be done by processing transaction data that overlaps by using data mining association techniques. This association rule technique uses the Apriori algorithm which deals with the study of 'what is with what' or discovers the association pattern of items that are often bought. The results of this study in the form of rules include the first, if you buy an eraser, it is likely that consumers also buy notebooks simultaneously. Second, if you buy Tipex, then consumers also buy a double folio. The results of the Apriori algorithm process are based on a minimum support value of 35% and a minimum confidence value of 80%.


2020 ◽  
Vol 10 (2) ◽  
pp. 138
Author(s):  
Muhammad SyahruRomadhon ◽  
Achmad Kodar

Jakarta is one of the culinary attractions, many tourist attractions every year become creative in business. One of them is a cafe. Cafe Ruang Temu has sales transaction data but is not used to see associations between one product and another. In this case there needs to be a system for finding menu combinations by processing sales transactions. One of the data mining techniques is association rule or Market Basket Analysis (MBA) with apriori algorithm. Apriori algorithm aims to produce association rules to form menu combinations. The sales dataset for January 2019 to July 2019 is determined by the minimum support and minimum confidence values that have been set.  


Author(s):  
Yeng Primawati ◽  
Ihsan Verdian ◽  
Gunadi Widi Nurcahyo

Agent is one of very important assets for distributors. A better knowledge of the agents and their behavior is required, particularly to support decisions related to the company's business strategy and to manage a better relationship with distributors. Such knowledge can be obtained by classifying agents based on their behavior through historical data, such as the sale and purchase transaction data. One approach that can be done is a segmentation approach can be done by dividing the agents into several segments. In this paper, Data Mining techniques i.e. K-means clustering method is exploredto classify sales agents. By implementing k-means, the knowledge about the best agents can be acquired along with the agents that have least contribution to the distributor.


NCICCNDA ◽  
2018 ◽  
Author(s):  
Adithya Gupta ◽  
Ankitha A ◽  
Subramanya Raju ◽  
Vidya B H ◽  
Rumana Anjum

Author(s):  
Sujata Mulik

Agriculture sector in India is facing rigorous problem to maximize crop productivity. More than 60 percent of the crop still depends on climatic factors like rainfall, temperature, humidity. This paper discusses the use of various Data Mining applications in agriculture sector. Data Mining is used to solve various problems in agriculture sector. It can be used it to solve yield prediction.  The problem of yield prediction is a major problem that remains to be solved based on available data. Data mining techniques are the better choices for this purpose. Different Data Mining techniques are used and evaluated in agriculture for estimating the future year's crop production. In this paper we have focused on predicting crop yield productivity of kharif & Rabi Crops. 


Sign in / Sign up

Export Citation Format

Share Document