scholarly journals Effect of Chromium Trioxide Coating on the Thermal Performance of Solar Thermal Collector

Author(s):  
Èkram Hadi Alaskaree ◽  
Osamah Raad Skheel Alkhafaji ◽  
Nizar F. O. Al-Muhsen
Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2661 ◽  
Author(s):  
Sang-Myung Kim ◽  
Jin-Hee Kim ◽  
Jun-Tae Kim

A photovoltaic thermal (PVT) system is a technology that combines photovoltaics (PV) and a solar thermal collector to produce thermal energy and generate electricity. PVT systems have the advantage that the energy output per unit area is higher than the single use of a PV module or solar thermal collector, since both heat and electricity can be produced and used simultaneously. Air-based PVT collectors use air as the heat transfer medium and flow patterns are important factors that affect the performance of the PVT collector. In this study, the thermal and electrical performance and characteristics of an air-based PVT collector were analyzed through experiments. The PVT collector, with bending round-shaped heat-absorbing plates, which increase the air flow path, has been developed to improve the thermal performance. The experiment was done under the test conditions of ISO 9806:2017 for the thermal performance analysis of an air-based PVT collector. The electrical performance was analyzed under the same conditions. In the results, it can be found that the inlet flow rate of the PVT collector considerably affects the thermal efficiency. It was analyzed that as the inlet flow rate increased from 60 to 200 m3/h, the thermal efficiency increased from 29% to 42%. Then, the electricity efficiency was also analyzed, where it was determined that it was improved according to operating condition of PVT collector.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
M. Murugan ◽  
R. Vijayan ◽  
A. Saravanan ◽  
S. Jaisankar

In this present work, the influence of corrugated booster reflectors (CBR) in a centrally finned twist (CFT) inserted solar thermal collector (SC) on heat transfer and thermal performance characteristics has been approached experimentally. The experimental trials have been made with two different twist ratios (Y = 3 and 6) for typical twist (TT) and CFT under same working conditions. The results were compared with the plain tube SC with CBR plain and also with the plain tube SC with flat booster reflectors (FBR plain). The experimental result of the CBR plain has been verified with the standard equations and found the deviations within ±10.05% for Nusselt number and ±9.42% for friction factor. The CBR has 1.6% higher effective reflection area than the FBR. Hence, the CBR augmented the Nusselt number around 8.25% over the FBR. When compared to the CBR plain, the CFT of minimum twist ratio (Y = 3) offered 10.09% higher thermal efficiency. In addition, empirical correlations have been derived for predicting the Nusselt number and friction factor. The deviations of the predicted value from the experiment value fall within ±10.62% for Nusselt number and ±11.28% for friction factor.


Author(s):  
Chung-Yu Yeh ◽  
K.J.F. Boonk ◽  
Sadeghi Gholamabbas ◽  
Mohammad Mehrali ◽  
Mina Shahi ◽  
...  

Author(s):  
Julia Maria Massareli Costa ◽  
Guilherme Viana ◽  
Vinicius Cruz ◽  
Felipe Boragina da silva ◽  
Ana Beatriz Valentin ◽  
...  

Author(s):  
David García-Menéndez ◽  
Juan Carlos Ríos-Fernández ◽  
Ana María Blanco-Marigorta ◽  
María José Suárez-López

Sign in / Sign up

Export Citation Format

Share Document