Influence of Corrugated Booster Reflectors in a Centrally Finned Twist Inserted Solar Thermal Collector on Heat Transfer and Thermal Performance Characteristics

2019 ◽  
Vol 141 (6) ◽  
Author(s):  
M. Murugan ◽  
R. Vijayan ◽  
A. Saravanan ◽  
S. Jaisankar

In this present work, the influence of corrugated booster reflectors (CBR) in a centrally finned twist (CFT) inserted solar thermal collector (SC) on heat transfer and thermal performance characteristics has been approached experimentally. The experimental trials have been made with two different twist ratios (Y = 3 and 6) for typical twist (TT) and CFT under same working conditions. The results were compared with the plain tube SC with CBR plain and also with the plain tube SC with flat booster reflectors (FBR plain). The experimental result of the CBR plain has been verified with the standard equations and found the deviations within ±10.05% for Nusselt number and ±9.42% for friction factor. The CBR has 1.6% higher effective reflection area than the FBR. Hence, the CBR augmented the Nusselt number around 8.25% over the FBR. When compared to the CBR plain, the CFT of minimum twist ratio (Y = 3) offered 10.09% higher thermal efficiency. In addition, empirical correlations have been derived for predicting the Nusselt number and friction factor. The deviations of the predicted value from the experiment value fall within ±10.62% for Nusselt number and ±11.28% for friction factor.

Author(s):  
L. Syam Sundar ◽  
E. Venkata Ramana ◽  
Zafar Said ◽  
António M.B. Pereira ◽  
Antonio C.M. Sousa

Abstract The friction factor, thermal performance, and heat transfer are experimentally analyzed for reduced-graphene oxide/cobalt oxide (rGO/CO3O4) hybrid nanomaterial-based nanofluid circulating in a plain tube with and without twisted tape inserts having different pitches. The reduced-graphene oxide/cobalt oxide (rGO/CO3O4) hybrid nanomaterial is prepared using in situ/chemical reduction technique and then characterized with transmission electron microscope, X-ray diffraction, and magnetometry. The experiments were conducted with different values of particle loading (0.05%, 0.1%, and 0.2%) and Reynolds number (2000–2,020,000). Three twisted tape inserts of helixes 285 mm, 190 mm, and 95 mm were used. The nanofluids was produced from the addition of the hybrid nanomaterial to water yield an increase, as compared to the basefluid (water), of the Nusselt number, which is further enhanced by increasing the nanoparticle loading. Therefore, when compared to water, the Nusselt number is enhanced by 25.65%, with no twisted tape and by 79.16% with twisted tape with helix of 95 mm for the nanofluid of 0.2% volume concentration. However, when compared to water, there is a slight friction factor penalty with the 0.2% particle loading of 1.11-times and 1.49-times for the plain tube and for the 95-mm twisted tape helix, respectively. The thermal performance factor gets enhanced by increasing the nanoparticles concentration of the hybrid nanofluids with or without twisted tape inserts, and it is always higher than one. Based on the experimental data, regression equations were developed for the Nusselt number and friction factor.


Author(s):  
Pornchai Nivesrangsan ◽  
Somsak Pethkool ◽  
Kwanchai Nanan ◽  
Monsak Pimsarn ◽  
Smith Eiamsa-ard

This paper presents the heat transfer augmentation and friction factor characteristics by means of dimpled tubes. The experiments were conducted using the dimpled tubes with two different dimpled-surface patterns including aligned arrangement (A-A) and staggered arrangement (S-A), each with two pitch ratios (PR = p/Di = 0.6 and 1.0), for Reynolds number ranging from 9800 to 67,000. The experimental results achieved from the dimpled tubes are compared with those obtained from the plain tube. Evidently, the dimpled tubes with both arrangements offer higher heat transfer rates compared to the plain tube and the dimpled tube with staggered arrangement shows an advantage on the basis of heat transfer enhancement over the dimpled tube with aligned arrangement. The increase in heat transfer rate with reducing pitch ratio is due to the higher turbulent intensity imparted to the flow between the dimple surfaces. The mean heat transfer rate offered by the dimpled tube with staggered arrangement (S-A) at the lowest pitch ratio (PR = 0.6), is higher than those provided by the plain tube and the dimpled tube with aligned arrangement (A-A) at the same PR by around 127% and 8%, respectively. The empirical correlations developed in terms of pitch ratio (PR), Prandtl number (Pr) and Reynolds number, are fitted the experimental data within ±8% and ±2% for Nusselt number (Nu) and friction factor (f), respectively. In addition, the thermal performance factors under an equal pumping power constraint of the dimple tubes for both dimpled-surface arrangements are also determined.


Author(s):  
Sogol Pirbastami ◽  
Samir Moujaes

A Computational Fluid Dynamics (CFD) study of heat enhancement in helically grooved tubes was carried out by using a 3-dimensional simulation with the STARCCM+ simulation package software. The k-ε model selected for turbulent flow simulation and the governing equations were solved by using the finite volume method. Geometric models of the current study include 3 rectangular grooved tubes with different groove width (w) and depth (e) which varies from 0.2 mm to 0.6 mm for the same tube length of 2.0m and diameter of 7.1 mm. The simulations were performed in the Reynolds number (Re) range of 4000–10000 with a uniform wall heat flux of 3150 w/m2 applied as a boundary condition on the surface of each tube. The purpose of this research is to investigate the effect of different groove dimensions on the thermal performance and pressure drop of water inside the grooved tubes and clarify the structural nature of the flow in regards to flow swirl and turbulent kinetic energy distributions. It was found that the highest performance belongs to the groove with these dimensions (w = 0.2 mm and e = 0.2 mm) which was considered for further study. Then, for these same groove dimensions four pitch size to tube diameter (p/D) ratios ranging from 1 to 18 were simulated for the same 2.0 m length tube. The results for Nusselt number (Nu) and friction factor (f) showed that by increasing the (p/D) ratio both the Nu numbers and the friction factors (f) values decrease. With a smaller pitch length (p) the turbulence intensity generated by the internal groove was also found to increase. The physical behavior of the turbulent flow and heat transfer characteristics were observed by contour plots which showed an increasing swirl flow and turbulent kinetic energy as p/D decreases. With an increase of the Nu number for smaller p/D ratio, a penalty of a higher pressure drop was obtained. The results were validated with a previous experimental work and the average error between the experimental and CFD Nu numbers and f were 13% and 8% respectively. A higher level of turbulent kinetic energy is observed near the grooves, as compared to the smooth areas of the pipe surface away from the grooves, which are expected to lead to higher levels of heat transfer. The effect of pitch length (p) on the flow pattern were plotted by streamlines along the tubes, by decreasing the pitch size (p/D ratio) an increase in the swirl is noticed as evidenced by the plots of the path lines. Finally, empirical correlations for Nusselt number and friction factor were provided as a function of p/D and Re number. This study indicates that the incorporation of the internal groove, of particular dimensions, can lead to an improvement of performance in heat exchanger devices. A limited variation of the groove dimensions was conducted and it was found that the values of Nu and f do not improve with an increase of (w) nor with that of (e) from 0.2–0.6 mm.


2015 ◽  
Vol 751 ◽  
pp. 251-256
Author(s):  
Ying Yong Kaewkohkiat ◽  
Sombat Tamna ◽  
Pongjet Promvonge

An experimental study on heat transfer enhancement in a heat exchanger square-duct fitted diagonally with 45° V-ribbed tapes has been conducted. The tested duct has a square section and uniform heat-fluxed walls and the flow rate of air used as the test fluid is presented in terms of Reynolds number from 4000 to 25,000. The insertion of the V-ribbed tape is performed with a rib-pitch to duct-height ratio, (P/H=PR=0.75 and 2) at the rib attack angle of 45° with respect to the main flow direction. The V-ribbed tape inserted diagonally in the duct is expected to generate a longitudinal vortex flow pair in each tape side through the heated duct. Influences of four rib-to-duct height ratios (e/H=BR=0.1, 0.15, 0.2 and 0.25) on the heat transfer and pressure drop in terms of respective Nusselt number and friction factor are investigated. The experimental result indicates that the BR and PR of the V-ribs provide a significant effect on the thermal performance of the test duct. The results reveal that at smaller PR, the V-rib with BR=0.25 provides the highest heat transfer and friction factor but the one with BR=0.2, PR=0.75 yields the best thermal performance.


Author(s):  
Khwanchit Wongcharee ◽  
Somsak Pethkool ◽  
Chinaruk Thianpong

This paper describes an experimental study of turbulent convective heat transfer and flow friction characteristics in a double tube heat exchanger equipped with propellers (2 blade-type). The propellers are used as the decaying swirl generators in the inner tube. The experiments were performed using the propellers with four different interval lengths (l = 1D, 2D, 3D and 4D where D is diameter of the inner tube), for the Reynolds number ranging from 5000 to 32,000, using water with temperature of 27°C and 70°C as cold and hot working fluids, respectively. The data of the tube equipped with the propellers are reported together with those of the plain tube, for comparison. The obtained results demonstrate that the heat transfer rate in term of Nusselt number (Nu) and friction factor (f) in the tube with propellers are higher than those in the plain tube at the similar operating conditions. This is due to the chaotic mixing and efficient interruption of thermal boundary layer caused by the propellers. In addition, the Nusselt number and friction factor in the tube fitted with the propellers increase as the interval length decreases. Depending on Reynolds number and interval length, Nusselt numbers and friction factors in the tube fitted with the propellers are augmented to 1.95 to 2.3 times and 5.8 to 13.2 times of those in the plain tube. In addition, the correlations of the Nusselt number (Nu) and the friction factor (f) for tube fitted with the propellers are reported and the performance evaluation to access the real benefits of using the turbulators is also determined.


2013 ◽  
Vol 17 (4) ◽  
pp. 1125-1137 ◽  
Author(s):  
P. Selvaraj ◽  
J. Sarangan ◽  
S. Suresh

The article presents computational fluid dynamics studies on heat transfer, pressure drop, friction factor, Nusselt number and thermal hydraulic performance of a plain tube and tube equipped with the three types of internal grooves (circular, square and trapezoidal).Water was used as the working fluid. Tests were performed for Reynolds number ranges from 5000 to 13500 for plain tube and different geometry inside grooved tubes. The maximum increase of pressure drop was obtained from numerical modeling 74% for circular, 38% for square and 78% for trapezoidal grooved tubes were compared with plain tube. Based on computational fluid dynamics analysis the average Nusselt number was increased up to 37%, 26% and 42% for circular, square and trapezoidal grooved tubes respectively while compared with the plain tube. The thermal hydraulic performance was obtained from computational fluid dynamics analysis up to 38% for circular grooved tube, 27% for square grooved tube and 40% for trapezoidal grooved tube while compared with the plain tube.


Author(s):  
Wei Du ◽  
Lei Luo ◽  
Songtao Wang ◽  
Jian Liu ◽  
Bengt Ake Sunden

Purpose The purpose of this study is to enhance the thermal performance in the labyrinth channel by different ribs shape. The labyrinth channel is a relatively new cooling structure to decrease the temperature near the trailing region of gas turbine. Design/methodology/approach Based on the geometric similarity, a simplified geometric model is used. The k − ω turbulence model is used to close the Navier–Stokes equations. Five rib shapes (one rectangular rib, two arched ribs and two trapezoid ribs) and five Reynolds numbers (10,000 to 50,000) are considered. The Nusselt number, flow structure and friction factor are analyzed. Findings Nusselt number is tightly related to the rib shape in the labyrinth channel. The different shapes of the ribs result in different horseshoe vortex and wake region. In general, the arched rib brings the highest Nusselt number and friction factor. The Nusselt number is increased by 15.8 per cent compared to that of trapezoidal ribs. High Nusselt number is accompanied by the high friction factor in a labyrinth channels. The friction factor is increased by 64.6 per cent compared to rectangular ribs. However, the rib shape has a minor effect on the overall thermal performance. Practical implications This study is useful to protect the trailing region of advanced gas turbine. Originality/value This paper presents the flow structure and heat transfer characteristics in a labyrinth channel with different rib shapes.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 306 ◽  
Author(s):  
Agung Wijayanta ◽  
Pranowo ◽  
Mirmanto ◽  
Budi Kristiawan ◽  
Muhammad Aziz

In this study, a numerical simulation has been conducted in order to evaluate the thermal hydraulic performance of a turbulent single-phase flow inside an enhanced tube equipped with a square-cut twisted tape (STT) insert. The classical twisted tape (CTT) insert was also investigated for comparison. The k-ε renormalized group turbulence model has been utilized as the turbulent model. Various twist ratios (y/W) of 2.7, 4.5, and 6.5 were investigated for the Reynolds number range of 8000–18,000, with water as the working fluid. The numerical results indicated that, in comparison with the plain tube (PT), the tube equipped with the STT with the twist ratios of 2.7, 4.5, and 6.5 led to an increase in the values of the Nusselt number and friction factor in the inner tube by 45.4–80.7% and 2.0–3.3 times, respectively; in addition, the highest thermal performance of 1.23 has been obtained. The results further indicated that the tube equipped with the CTT of the same twist ratios improved the Nusselt number and friction factor in the inner tube by 40.3–74.4% and 1.7–3.0 times, respectively, in comparison with the PT; further, the maximum thermal performance of 1.18 was achieved.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3170 ◽  
Author(s):  
Agung Wijayanta ◽  
Muhammad Aziz ◽  
Keishi Kariya ◽  
Akio Miyara

A numerical study was performed to investigate the thermal performance characteristics of an enhanced tube heat exchanger fitted with punched delta-winglet vortex generators. Computational fluid dynamics modeling was applied using the k–ε renormalized group turbulence model. Benchmarking was performed using the results of the experimental study for a similar geometry. Attack angles of 30°, 50°, and 70° were used to investigate the heat transfer and pressure drop characteristics of the enhanced tube. Flow conditions were considered in the turbulent region in the Reynolds number range of 9100 to 17,400. A smooth tube was employed for evaluating the increment in the Nusselt number and the friction factor characteristics of the enhanced tube. The results show that the Nusselt number, friction factor, and thermal performance factor have a similar tendency. The presence of this insert offers a higher thermal performance factor as compared to that obtained with a plain tube. Vortex development in the flow structure aids in generating a vortex flow, which increases convective heat transfer. In addition, as the angle is varied, it is observed that the largest attack angle provides the highest thermal performance factor. The greatest increase in the Nusselt number and friction factor, respectively, was found to be approximately 3.7 and 10 times greater than those of a smooth tube. Through numerical simulations with the present simulation condition, it is revealed that the thermal performance factor approaches the value of 1.1. Moreover, the numerical and experimental values agree well although they tend to be different at high Reynolds number conditions. The numerical and experimental values both show similar trends in the Nusselt number, friction factor, and thermal performance factor.


Sign in / Sign up

Export Citation Format

Share Document