Policing with Big Data: DNA Matching vs Crime Prediction

2020 ◽  
pp. 57-70
Author(s):  
Tom Sorell

Sorell focuses on two state (police) uses of big data that have elicited concern: the creation of DNA databases and the use of past data to predict future crimes and criminals. In response to the former, Sorell argues that there is nothing intrinsically wrong with large-scale, indiscriminate databases of DNA profiles. These do not constitute an invasion of privacy, and nor do they necessarily render an entire population suspect, although he accepts that in the current climate they may be interpreted that way. As regards predictive policing, Sorell’s argument is that these uses are more concerning, basing future decisions on past information that may no longer be pertinent and could well be discriminatory.

1994 ◽  
Vol 29 (3) ◽  
pp. 281-288 ◽  
Author(s):  
A. Siepe

The floodplain of the Upper Rhine and its biocoenoses have, through different river-regulatory activities over the last 175 years, undergone large scale degradation. At the same time flood protection for the downstream inhabitants has been greatly reduced. For reasons of flood protection, the “Polder Altenheim” in Baden-Württemberg, Germany southwest of Strasbourg, France, with so called retention flooding, was put into operation in 1987. The original floodplain had been diked for the previous 17 years, during which no flooding occurred. Since 1989 “ecological flooding” also is carried out. This has assisted in the regeneration of floodplain biotopes and promoted the floodplain biotic communities and the readaption of the bioceonosis to a regular flooding regime. The creation of new floodplain biotopes of early succession stages, particularly through geomorphodynamic processes, has followed the more than ten flood ocassions and typical biotic communities have colonised these sites. This will be presented together with selected examples of terrestrial and limnical species and communities. The following species and communities will be discussed: kingfisher Alcedo atthis, carabid communities (Coleoptera), the red alga Hildenbrandia rivularis (Rhodophyceae), the freshwater snail Theodoxus fluviatilis (Neritacea) and the freshwater bug Aphelocheirus aestivalis (Hydrocorisae).


2020 ◽  
Author(s):  
Anusha Ampavathi ◽  
Vijaya Saradhi T

UNSTRUCTURED Big data and its approaches are generally helpful for healthcare and biomedical sectors for predicting the disease. For trivial symptoms, the difficulty is to meet the doctors at any time in the hospital. Thus, big data provides essential data regarding the diseases on the basis of the patient’s symptoms. For several medical organizations, disease prediction is important for making the best feasible health care decisions. Conversely, the conventional medical care model offers input as structured that requires more accurate and consistent prediction. This paper is planned to develop the multi-disease prediction using the improvised deep learning concept. Here, the different datasets pertain to “Diabetes, Hepatitis, lung cancer, liver tumor, heart disease, Parkinson’s disease, and Alzheimer’s disease”, from the benchmark UCI repository is gathered for conducting the experiment. The proposed model involves three phases (a) Data normalization (b) Weighted normalized feature extraction, and (c) prediction. Initially, the dataset is normalized in order to make the attribute's range at a certain level. Further, weighted feature extraction is performed, in which a weight function is multiplied with each attribute value for making large scale deviation. Here, the weight function is optimized using the combination of two meta-heuristic algorithms termed as Jaya Algorithm-based Multi-Verse Optimization algorithm (JA-MVO). The optimally extracted features are subjected to the hybrid deep learning algorithms like “Deep Belief Network (DBN) and Recurrent Neural Network (RNN)”. As a modification to hybrid deep learning architecture, the weight of both DBN and RNN is optimized using the same hybrid optimization algorithm. Further, the comparative evaluation of the proposed prediction over the existing models certifies its effectiveness through various performance measures.


2021 ◽  
Vol 62 ◽  
pp. 142-157
Author(s):  
James Rogers ◽  
Amanda Müller ◽  
Frank E. Daulton ◽  
Paul Dickinson ◽  
Cosmin Florescu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document