Interaction of electron streams with elastic lattice waves

1969 ◽  
Vol 97 (2) ◽  
pp. 257-306 ◽  
Author(s):  
V.I. Pustovoit
2019 ◽  
Vol 22 (2) ◽  
pp. 152-163 ◽  
Author(s):  
G. Carta ◽  
I. S. Jones ◽  
N. V. Movchan ◽  
A. B. Movchan
Keyword(s):  

Author(s):  
Dong-Feng Li ◽  
Noel P. O’Dowd ◽  
Catrin M. Davies ◽  
Shu-Yan Zhang

In this study, the deformation behavior of an austenitic stainless steel is investigated at the microscale by means of in-situ neutron diffraction (ND) measurements in conjunction with finite-element (FE) simulations. Results are presented in terms of (elastic) lattice strains for selected grain (crystallite) families. The FE model is based on a crystallographic (slip system based) representation of the deformation at the microscale. The present study indicates that combined in-situ ND measurement and micromechanical modelling provides an enhanced understanding of the mechanical response at the microscale in engineering steels.


2006 ◽  
Vol 23 (2) ◽  
pp. 403-406 ◽  
Author(s):  
Wang Chun-Hua ◽  
Wang Xiao-Gang

2013 ◽  
Vol 79 (5) ◽  
pp. 629-633
Author(s):  
B. FAROKHI

AbstractThe linear dust lattice waves propagating in a two-dimensional honeycomb configuration is investigated. The interaction between particles is considered up to distance 2a, i.e. the third-neighbor interactions. Longitudinal and transverse (in-plane) dispersion relations are derived for waves in arbitrary directions. The study of dispersion relations with more neighbor interactions shows that in some cases the results change physically. Also, the dispersion relation in the different direction displays anisotropy of the group velocity in the lattice. The results are compared with dispersion relations of the waves in the hexagonal lattice.


Author(s):  
Mikhail N. Kirsanov ◽  
Dmitriy V. Tinkov

Introduction. We study the oscillations of a massive load on a planar statically definable symmetric truss of a regular type with parallel belts. Truss weight is not included. Free vertical oscillations are considered. The stiffness of the truss rods is assumed to be the same, the deformations are elastic. Lattice of the truss is double with descending braces and racks. New in the formulation and solution of the problem is the analytical form of the solution, which makes it possible in practice to easily evaluate the frequency characteristics of the structure depending on an arbitrary number of truss panels and the location of the load. Materials and methods. The operators and methods of the system of computer mathematics Maple are used. To determine the forces in the rods, the knotting method is used. The common terms of the sequence of coefficients of solutions for different numbers of panels are obtained from solving linear homogeneous recurrent equations of various order, obtained by special operators of the Maple system. Dependence on two arbitrary natural parameters is revealed in two stages. First, solutions for fixed load positions are found, then these solutions are summarized into one final formula for frequency. Results. By a series of individual solutions to the problem of load oscillation using the double induction method, it was possible to find common members of all sequences. The solution is polynomial in both natural parameters. Graphs constructed for particular cases, showed the adequacy of the approach. The discontinuous non-monotonic nature of the intermittent change depending on the number of truss panels and some other features of the solution are noted. Conclusions. It is shown that the induction method, previously applicable mainly to statics problems with one parameter (number of truss panels), is fully operational to the problems of the oscillations of system with two natural parameters. It should be noted that significant labor costs and a significant increase in the time symbolic transformations in such tasks


1988 ◽  
pp. 24-38
Author(s):  
RICHARD H. BUBE
Keyword(s):  

2000 ◽  
pp. 473-476
Author(s):  
B. Farokhi ◽  
N.L. Tsintsadze ◽  
D.D. Tskhakaya
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document