Laser excitation of surface acoustic waves: a new direction in opto-acoustic spectroscopy of a solid

1985 ◽  
Vol 147 (11) ◽  
pp. 605 ◽  
Author(s):  
A.A. Karabutov
Author(s):  
A. Yu. Klokov ◽  
A. I. Sharkov ◽  
V. S. Krivobok ◽  
R. A. Khmelnitsky ◽  
V. A. Dravin

1996 ◽  
Author(s):  
Walter Arnold ◽  
Alexander A. Karabutov ◽  
Alexander P. Kubyshkin ◽  
Vladislav Y. Panchenko

2018 ◽  
Vol 8 (10) ◽  
pp. 1991 ◽  
Author(s):  
Rikesh Patel ◽  
Matthias Hirsch ◽  
Paul Dryburgh ◽  
Don Pieris ◽  
Samuel Achamfuo-Yeboah ◽  
...  

Additive manufacturing (AM) is a production technology where material is accumulated to create a structure, often through added shaped layers. The major advantage of additive manufacturing is in creating unique and complex parts for use in areas where conventional manufacturing reaches its limitations. However, the current class of AM systems produce parts that contain structural defects (e.g., cracks and pores) which is not compatible with certification in high value industries. The probable complexity of an AM design increases the difficulty of using many non-destructive evaluation (NDE) techniques to inspect AM parts—however, a unique opportunity exists to interrogate a part during production using a rapid surface based technique. Spatially resolved acoustic spectroscopy (SRAS) is a laser ultrasound inspection technique used to image material microstructure of metals and alloys. SRAS generates and detects `controlled’ surface acoustic waves (SAWs) using lasers, which makes it a non-contact and non-destructive technique. The technique is also sensitive to surface and subsurface voids. Work until now has been on imaging the texture information of selective laser melted (SLM) parts once prepared (i.e., polished with R a < 0 . 1 μ m)—the challenge for performing laser ultrasonics in-process is measuring waves on the rough surfaces present on as-deposited parts. This paper presents the results of a prototype SRAS system, developed using the rough surface ultrasound detector known as speckle knife edge detector (SKED)—texture images using this setup of an as-deposited Ti64 SLM sample, with a surface roughness of S a ≈ 6 μ m, were obtained.


2020 ◽  
Vol 45 (7) ◽  
pp. 1810
Author(s):  
Lingyi Zhao ◽  
Don Vanderlaan ◽  
Heechul Yoon ◽  
Jingfei Liu ◽  
Changhui Li ◽  
...  

Author(s):  
Kemining W. Yeh ◽  
Richard S. Muller ◽  
Wei-Kuo Wu ◽  
Jack Washburn

Considerable and continuing interest has been shown in the thin film transducer fabrication for surface acoustic waves (SAW) in the past few years. Due to the high degree of miniaturization, compatibility with silicon integrated circuit technology, simplicity and ease of design, this new technology has played an important role in the design of new devices for communications and signal processing. Among the commonly used piezoelectric thin films, ZnO generally yields superior electromechanical properties and is expected to play a leading role in the development of SAW devices.


1998 ◽  
Vol 77 (5) ◽  
pp. 1195-1202
Author(s):  
Andreas Knabchen Yehoshua, B. Levinson, Ora

Sign in / Sign up

Export Citation Format

Share Document