scholarly journals Selective Manganese-Catalyzed Semihydrogenation of Alkynes with in-situ Generated H2 from KBH4 and Methanol

Author(s):  
Ronald Farrar-Tobar ◽  
Stefan Weber ◽  
Zita Csendes ◽  
Antonio Ammaturo ◽  
Sarah Fleissner ◽  
...  

The selective semihydrogenation of alkynes with the Mn(I) alkyl catalyst fac-[Mn(dippe)(CO)3(CH2CH2CH3)] (dippe = 1,2-bis(di-iso-propylphosphino)ethane) as pre-catalyst is described. Hydrogen gas required for the hydrogenation is generated in situ upon alcoholysis of KBH4 with methanol. A series of aryl-aryl, aryl-alkyl, alkyl-alkyl and terminal alkynes were readily hydrogenated to yield E-alkenes in good to excellent isolated yields. The reaction proceeds at 90°C with catalyst loadings of 0.5 -2 mol%. The implemented protocol tolerates a variety of electron donating and electron withdrawing functional groups including halides, phenols, nitriles, unprotected amines and heterocycles. The reaction can be upscaled to the gram scale. Mechanistic investigations including deuterium labelling studies and DFT calculations were undertaken to provide a reasonable reaction mechanism showing that initially formed Z-isomer undergoes fast isomerization to afford the thermodynamically more stable E-isomer.

2019 ◽  
Vol 9 (22) ◽  
pp. 6327-6334 ◽  
Author(s):  
Tian Xia ◽  
Brian Spiegelberg ◽  
Zhihong Wei ◽  
Haijun Jiao ◽  
Sergey Tin ◽  
...  

Manganese PNP pincer complexes are excellent catalysts for the isomerization of allylic alcohols to the ketones. The reaction proceeds via a dehydrogenation/hydrogenation mechanism as shown by DFT calculations and deuterium labelling.


2000 ◽  
Vol 72 (9) ◽  
pp. 1715-1719 ◽  
Author(s):  
O. G. Kulinkovich

Dialkoxytitanacyclopropane intermediates [or titanium (II)-olefin complexes] generated in situ from ethylmagnesium bromide and titanium (IV) isopropoxide react with allylic alcohols and allylic ethers to afford SN2' allylic ethylation products. The reaction proceeds with high regioselectivity and with low to high trans-/cis-stereoselectivity. This observation and others suggest a reaction mechanism involving an EtMgBr-initiated formation of titanacyclopentane ate complex 10 from titanacyclopropane-olefin complex 7 as a key step. Based on this assumption, a modified mechanism of titanium-mediated cyclopropanation of esters with Grignard reagents is proposed.


Synthesis ◽  
2017 ◽  
Vol 50 (07) ◽  
pp. 1511-1520 ◽  
Author(s):  
Chinmay Chowdhury ◽  
Moumita Jash ◽  
Bimolendu Das ◽  
Suparna Sen

A straightforward and efficient method for the synthesis of pyrazoles fused with 1,2,3,4-tetrahydroquinoline, 2,3-dihydro-1H-indene­, or 1,2,3,4-tetrahydronaphthalene involves the formation of the tosylhydrazone from an aromatic substrate carrying aldehyde and acetylenic functionalities at appropriate positions, followed by base-promoted generation of the diazo compound and subsequent intramolecular 1,3-dipolar cycloaddition. A number of functional groups were found to be compatible for this reaction sequence and yields were moderate to very good (44–95%). A plausible reaction mechanism supported by DFT calculations has been provided to explain the formation of products.


2019 ◽  
Author(s):  
Tomas Vojkovsky ◽  
Shubham Deolka ◽  
Saiyyna P. Stepanova ◽  
Michael C. Roy ◽  
Eugene Khaskin

<a>Sulfones and sulfonamides with an α-CH bond can be easily alkylated by aliphatic alcohols to add the carbon skeleton of the alcohol via a one-step, Ru(II) catalyzed redox neutral reaction. The reaction requires a sub-stoichiometric amount of base and produces only water as a byproduct. A number of pharmaceutically relevant functional groups such as piperidine, morpholine, etc. are well tolerated under the reaction conditions to give higher value-added products in one step from widely available substrates. The reaction proceeds through a sulfone carbanion addition to an in-situ generated aldehyde formed via catalytic dehydrogenation and subsequent catalyst mediated replacement of the secondary alcohol by hydrogen.</a>


2019 ◽  
Author(s):  
Felipe Cesar Sousa e Silva ◽  
Nguyen T Van ◽  
Sarah Wengryniuk

Herein, we report the metal-free direct C–H arylation of enones mediated by hypervalent iodine reagents. The reaction proceeds via a reductive iodonium Claisen rearrangement of <i>in situ </i>b-pyridinium silyl enol ethers. The aryl groups are derived from ArI(O<sub>2</sub>CCF<sub>3</sub>)<sub>2</sub> reagents, which are readily accessed from the parent iodoarenes. It is tolerant of a wide range of substitution patterns and the incorporated arenes maintain the valuable iodine functional handle. Mechanistic investigations implicate arylation via an umpoled “enolonium” species and that the presence of a b-pyridinium moiety is critical for desired C–C bond formation.


ChemCatChem ◽  
2022 ◽  
Author(s):  
Chadatip Rodaum ◽  
Anawat Thivasasith ◽  
Ploychanok Iadrat ◽  
Pinit Kidkhunthod ◽  
Sitthiphong Pengpanich ◽  
...  

ChemCatChem ◽  
2021 ◽  
Author(s):  
Chadatip Rodaum ◽  
Anawat Thivasasith ◽  
Ploychanok Iadrat ◽  
Pinit Kidkhunthod ◽  
Sitthiphong Pengpanich ◽  
...  

2019 ◽  
Author(s):  
Tomas Vojkovsky ◽  
Shubham Deolka ◽  
Saiyyna P. Stepanova ◽  
Michael C. Roy ◽  
Eugene Khaskin

<a>Sulfones and sulfonamides with an α-CH bond can be easily alkylated by aliphatic alcohols to add the carbon skeleton of the alcohol via a one-step, Ru(II) catalyzed redox neutral reaction. The reaction requires a sub-stoichiometric amount of base and produces only water as a byproduct. A number of pharmaceutically relevant functional groups such as piperidine, morpholine, etc. are well tolerated under the reaction conditions to give higher value-added products in one step from widely available substrates. The reaction proceeds through a sulfone carbanion addition to an in-situ generated aldehyde formed via catalytic dehydrogenation and subsequent catalyst mediated replacement of the secondary alcohol by hydrogen.</a>


2019 ◽  
Author(s):  
Felipe Cesar Sousa e Silva ◽  
Nguyen T Van ◽  
Sarah Wengryniuk

Herein, we report the metal-free direct C–H arylation of enones mediated by hypervalent iodine reagents. The reaction proceeds via a reductive iodonium Claisen rearrangement of <i>in situ </i>b-pyridinium silyl enol ethers. The aryl groups are derived from ArI(O<sub>2</sub>CCF<sub>3</sub>)<sub>2</sub> reagents, which are readily accessed from the parent iodoarenes. It is tolerant of a wide range of substitution patterns and the incorporated arenes maintain the valuable iodine functional handle. Mechanistic investigations implicate arylation via an umpoled “enolonium” species and that the presence of a b-pyridinium moiety is critical for desired C–C bond formation.


Synthesis ◽  
2020 ◽  
Vol 52 (13) ◽  
pp. 1959-1968
Author(s):  
Yuzhu Yang ◽  
Weidong Pan ◽  
Lisheng He ◽  
Fei Li ◽  
Xiaolan Liu

A novel manganese-mediated reaction for the synthesis of polysubstituted α-naphthols has been developed from β-keto esters and terminal alkynes. This system holds the advantages of readily available starting materials and mild conditions. Mechanistic investigations revealed that this reaction proceeds via a tandem radical cyclization process.


Sign in / Sign up

Export Citation Format

Share Document