scholarly journals Modulated Self-Assembly of an Interpenetrated MIL-53 Sc Metal-Organic Framework with Excellent Volumetric H2 Storage and Working Capacity

Author(s):  
Alexander Thom ◽  
David Madden ◽  
Rocio Bueno-Perez ◽  
Ali Al Shakhs ◽  
Ciaran Lennon ◽  
...  

To achieve optimal performance in gas storage and delivery applications, metal-organic frameworks (MOFs) must combine high gravimetric and volumetric capacities. One potential route to balancing high pore volume with suitable crystal density is interpenetration, where identical nets sit within the void space of one another. Herein, we report an interpenetrated MIL-53 topology MOF, named GUF-1, where one-dimensional Sc(µ2-OH) chains are connected by 4,4’-(ethyne-1,2-diyl)dibenzoate linkers into a material that is an unusual example of an interpenetrated MOF with a rod-like secondary building unit. A combination of modulated self-assembly and grand canonical Monte Carlo simulations are used to optimise the porosity of GUF-1; H2 adsorption isotherms reveal a very high Qst for H2 of 7.6 kJ mol-1 and a working capacity of 41 g L-1 in a temperature-pressure swing system, which is comparable to benchmark MOFs. These results show that interpenetration is a viable route to high performance gas storage materials comprised of relatively simple building blocks.

Author(s):  
Zhenpeng Yao ◽  
Benjamin Sanchez-Lengeling ◽  
N. Scott Bobbitt ◽  
Benjamin J. Bucior ◽  
Sai Govind Hari Kumar ◽  
...  

Reticular frameworks are crystalline porous materials that form <i>via</i> the self-assembly of molecular building blocks (<i>i.e.</i>, nodes and linkers) in different topologies. Many of them have high internal surface areas and other desirable properties for gas storage, separation, and other applications. The notable variety of the possible building blocks and the diverse ways they can be assembled endow reticular frameworks with a near-infinite combinatorial design space, making reticular chemistry both promising and challenging for prospective materials design. Here, we propose an automated nanoporous materials discovery platform powered by a supramolecular variational autoencoder (SmVAE) for the generative design of reticular materials with desired functions. We demonstrate the automated design process with a class of metal-organic framework (MOF) structures and the goal of separating CO<sub>2</sub> from natural gas or flue gas. Our model exhibits high fidelity in capturing structural features and reconstructing MOF structures. We show that the autoencoder has a promising optimization capability when jointly trained with multiple top adsorbent candidates identified for superior gas separation. MOFs discovered here are strongly competitive against some of the best-performing MOFs/zeolites ever reported. This platform lays the groundwork for the design of reticular frameworks for desired applications.


2020 ◽  
Author(s):  
Zhenpeng Yao ◽  
Benjamin Sanchez-Lengeling ◽  
N. Scott Bobbitt ◽  
Benjamin J. Bucior ◽  
Sai Govind Hari Kumar ◽  
...  

Reticular frameworks are crystalline porous materials that form <i>via</i> the self-assembly of molecular building blocks (<i>i.e.</i>, nodes and linkers) in different topologies. Many of them have high internal surface areas and other desirable properties for gas storage, separation, and other applications. The notable variety of the possible building blocks and the diverse ways they can be assembled endow reticular frameworks with a near-infinite combinatorial design space, making reticular chemistry both promising and challenging for prospective materials design. Here, we propose an automated nanoporous materials discovery platform powered by a supramolecular variational autoencoder (SmVAE) for the generative design of reticular materials with desired functions. We demonstrate the automated design process with a class of metal-organic framework (MOF) structures and the goal of separating CO<sub>2</sub> from natural gas or flue gas. Our model exhibits high fidelity in capturing structural features and reconstructing MOF structures. We show that the autoencoder has a promising optimization capability when jointly trained with multiple top adsorbent candidates identified for superior gas separation. MOFs discovered here are strongly competitive against some of the best-performing MOFs/zeolites ever reported. This platform lays the groundwork for the design of reticular frameworks for desired applications.


2019 ◽  
Vol 48 (1) ◽  
pp. 278-284 ◽  
Author(s):  
Dongmei Wang ◽  
Zihua Liu ◽  
Lili Xu ◽  
Chunxia Li ◽  
Dian Zhao ◽  
...  

Porous In/Tb-CBDA has been successfully synthesized in the light of the heterometallic cooperative crystallization (HCC) approach. In/Tb-CBDA with high thermal and chemical stability exhibited high performance for gas storage and separation.


2020 ◽  
Author(s):  
Zhenpeng Yao ◽  
Benjamin Sanchez-Lengeling ◽  
N. Scott Bobbitt ◽  
Benjamin J. Bucior ◽  
Sai Govind Hari Kumar ◽  
...  

Reticular frameworks are crystalline porous materials that form <i>via</i> the self-assembly of molecular building blocks (<i>i.e.</i>, nodes and linkers) in different topologies. Many of them have high internal surface areas and other desirable properties for gas storage, separation, and other applications. The notable variety of the possible building blocks and the diverse ways they can be assembled endow reticular frameworks with a near-infinite combinatorial design space, making reticular chemistry both promising and challenging for prospective materials design. Here, we propose an automated nanoporous materials discovery platform powered by a supramolecular variational autoencoder (SmVAE) for the generative design of reticular materials with desired functions. We demonstrate the automated design process with a class of metal-organic framework (MOF) structures and the goal of separating CO<sub>2</sub> from natural gas or flue gas. Our model exhibits high fidelity in capturing structural features and reconstructing MOF structures. We show that the autoencoder has a promising optimization capability when jointly trained with multiple top adsorbent candidates identified for superior gas separation. MOFs discovered here are strongly competitive against some of the best-performing MOFs/zeolites ever reported. This platform lays the groundwork for the design of reticular frameworks for desired applications.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4594
Author(s):  
Rosaria Bruno ◽  
Teresa Mastropietro ◽  
Giovanni De Munno ◽  
Donatella Armentano

Self-assembly is the most powerful force for creating ordered supramolecular architectures from simple components under mild conditions. π···π stacking interactions have been widely explored in modern supramolecular chemistry as an attractive reversible noncovalent tool for the nondestructive fabrication of materials for different applications. Here, we report on the self-assembly of cytidine 5’-monophosphate (CMP) nucleotide and copper metal ions for the preparation of a rare nanoporous supramolecular metal-organic framework in water. π···π stacking interactions involving the aromatic groups of the ancillary 2,2’-bipyridine (bipy) ligands drive the self-assemblies of hexameric pseudo-amphiphilic [Cu6(bipy)6(CMP)2(µ-O)Br4]2+ units. Owing to the supramolecular geometric matching between the aromatic tails, a nanoporous crystalline phase with hydrophobic and hydrophilic chiral pores of 1.2 and 0.8 nanometers, respectively, was successfully synthesized. The encoded chiral information, contained on the enantiopure building blocks, is transferred to the final supramolecular structure, assembled in the very unusual topology 8T6. These kinds of materials, owing to chiral channels with chiral active sites from ribose moieties, where the enantioselective recognition can occur, are, in principle, good candidates to carry out efficient separation of enantiomers, better than traditional inorganic and organic porous materials.


2009 ◽  
Vol 48 (4) ◽  
pp. 1482-1489 ◽  
Author(s):  
Michael A. Shestopalov ◽  
Stéphane Cordier ◽  
Olivier Hernandez ◽  
Yann Molard ◽  
Christiane Perrin ◽  
...  

Author(s):  
Feng Luo ◽  
Ya Lin Fan ◽  
Xue Feng Feng ◽  
Rajamani Krishna ◽  
Meng Jia Yin

Constructing gigantic hydrophobic metal-organic cage is not only scientificly important, but also syntheticly challenging. Especially, we still have few cognition on the self-assembly and succedent host-guest recognition of transitional-metal-actinicles cages....


2021 ◽  
Author(s):  
Ning Liu ◽  
Qiaoqiao Zhang ◽  
Jingqi Guan

Seeking for low-cost and high-performance electrocatalysts for oxygen evolution reaction (OER) has drawn enormous research interest in the last few years. Reported herein is the topotactic construction of a binuclear...


Sign in / Sign up

Export Citation Format

Share Document