scholarly journals Inverse Design of Nanoporous Crystalline Reticular Materials with Deep Generative Models

Author(s):  
Zhenpeng Yao ◽  
Benjamin Sanchez-Lengeling ◽  
N. Scott Bobbitt ◽  
Benjamin J. Bucior ◽  
Sai Govind Hari Kumar ◽  
...  

Reticular frameworks are crystalline porous materials that form <i>via</i> the self-assembly of molecular building blocks (<i>i.e.</i>, nodes and linkers) in different topologies. Many of them have high internal surface areas and other desirable properties for gas storage, separation, and other applications. The notable variety of the possible building blocks and the diverse ways they can be assembled endow reticular frameworks with a near-infinite combinatorial design space, making reticular chemistry both promising and challenging for prospective materials design. Here, we propose an automated nanoporous materials discovery platform powered by a supramolecular variational autoencoder (SmVAE) for the generative design of reticular materials with desired functions. We demonstrate the automated design process with a class of metal-organic framework (MOF) structures and the goal of separating CO<sub>2</sub> from natural gas or flue gas. Our model exhibits high fidelity in capturing structural features and reconstructing MOF structures. We show that the autoencoder has a promising optimization capability when jointly trained with multiple top adsorbent candidates identified for superior gas separation. MOFs discovered here are strongly competitive against some of the best-performing MOFs/zeolites ever reported. This platform lays the groundwork for the design of reticular frameworks for desired applications.

Author(s):  
Zhenpeng Yao ◽  
Benjamin Sanchez-Lengeling ◽  
N. Scott Bobbitt ◽  
Benjamin J. Bucior ◽  
Sai Govind Hari Kumar ◽  
...  

Reticular frameworks are crystalline porous materials that form <i>via</i> the self-assembly of molecular building blocks (<i>i.e.</i>, nodes and linkers) in different topologies. Many of them have high internal surface areas and other desirable properties for gas storage, separation, and other applications. The notable variety of the possible building blocks and the diverse ways they can be assembled endow reticular frameworks with a near-infinite combinatorial design space, making reticular chemistry both promising and challenging for prospective materials design. Here, we propose an automated nanoporous materials discovery platform powered by a supramolecular variational autoencoder (SmVAE) for the generative design of reticular materials with desired functions. We demonstrate the automated design process with a class of metal-organic framework (MOF) structures and the goal of separating CO<sub>2</sub> from natural gas or flue gas. Our model exhibits high fidelity in capturing structural features and reconstructing MOF structures. We show that the autoencoder has a promising optimization capability when jointly trained with multiple top adsorbent candidates identified for superior gas separation. MOFs discovered here are strongly competitive against some of the best-performing MOFs/zeolites ever reported. This platform lays the groundwork for the design of reticular frameworks for desired applications.


2020 ◽  
Author(s):  
Zhenpeng Yao ◽  
Benjamin Sanchez-Lengeling ◽  
N. Scott Bobbitt ◽  
Benjamin J. Bucior ◽  
Sai Govind Hari Kumar ◽  
...  

Reticular frameworks are crystalline porous materials that form <i>via</i> the self-assembly of molecular building blocks (<i>i.e.</i>, nodes and linkers) in different topologies. Many of them have high internal surface areas and other desirable properties for gas storage, separation, and other applications. The notable variety of the possible building blocks and the diverse ways they can be assembled endow reticular frameworks with a near-infinite combinatorial design space, making reticular chemistry both promising and challenging for prospective materials design. Here, we propose an automated nanoporous materials discovery platform powered by a supramolecular variational autoencoder (SmVAE) for the generative design of reticular materials with desired functions. We demonstrate the automated design process with a class of metal-organic framework (MOF) structures and the goal of separating CO<sub>2</sub> from natural gas or flue gas. Our model exhibits high fidelity in capturing structural features and reconstructing MOF structures. We show that the autoencoder has a promising optimization capability when jointly trained with multiple top adsorbent candidates identified for superior gas separation. MOFs discovered here are strongly competitive against some of the best-performing MOFs/zeolites ever reported. This platform lays the groundwork for the design of reticular frameworks for desired applications.


1992 ◽  
Vol 277 ◽  
Author(s):  
Geoffrey A. Ozin ◽  
Carol L. Bowes ◽  
Mark R. Steele

ABSTRACTVarious MOCVD (metal-organic chemical vapour deposition) type precursors and their self-assembled semiconductor nanocluster products [1] have been investigated in zeolite Y hosts. From analysis of in situ observations (FTIR, UV-vis reflectance, Mössbauer, MAS-NMR) of the reaction sequences and structural features of the precursors and products (EXAFS and Rietveld refinement of powder XRD data) the zeolite is viewed as providing a macrospheroidal, multidendate coordination environment towards encapsulated guests. By thinking about the α- and β-cages of the zeolite Y host effectively as a zeolate ligand composed of interconnected aluminosilicate “crown ether-like” building blocks, the materials chemist is able to better understand and exploit the reactivity and coordination properties of the zeolite internal surface for the anchoring and self-assembly of a wide range of encapsulated guests. This approach helps with the design of synthetic strategies for creating novel guest-host inclusion compounds having possible applications in areas of materials science such as nonlinear optics, quantum electronics, and size/shape selective catalysis.


MRS Bulletin ◽  
2009 ◽  
Vol 34 (9) ◽  
pp. 682-690 ◽  
Author(s):  
Omar M. Yaghi ◽  
Qiaowei Li

AbstractReticular chemistry concerns the linking of molecular building blocks into predetermined structures using strong bonds. We have been working on creating and developing the conceptual and practical basis of this new area of research. As a result, new classes of crystalline porous materials have been designed and synthesized: metal-organic frameworks, zeolitic imidazolate frameworks, and covalent organic frameworks. Crystals of this type have exceptional surface areas (2,000−6,000 m2/g) and take up voluminous amounts of hydrogen (7.5 wt% at 77 K and 3−4 × 106 Pa), methane (50 wt% at 298 K and 2.5 × 106 Pa), and carbon dioxide (140 wt% at 298 K and 3 × 106 Pa). We have driven the basic science all the way to applications without losing sight of our quest for understanding the underlying molecular aspects of this chemistry. The presentation was focused on the design concepts, synthesis, and structure of these materials, with emphasis on their applications to onboard energy storage.


MRS Bulletin ◽  
2005 ◽  
Vol 30 (10) ◽  
pp. 713-720 ◽  
Author(s):  
Thomas Bein

AbstractOrdered nanoscale pore systems such as those represented by zeolites offer many opportunities for the design of complex functional systems via self-assembly.With their large internal surface areas and tunable, well-defined crystalline pore structures that allow molecular sieving and ion exchange, zeolites can be adapted for numerous applications. The nanoscale reactors present in zeolite pore systems have been explored as structural templates for the spatial organization of numerous guests. Examples from various fields are discussed, such as the stabilization of organic dyes for the construction of energy transfer and storage systems, the construction of host–guest hybrid catalyst systems, and the encapsulation of conducting or semiconducting nanoscale wires and clusters. More complex, hierarchical forms of nanostructured matter become accessible when zeolite crystals are used as building blocks for the selfassembly of thin films or three-dimensional objects. A combination of weaker and stronger interactions ranging from dispersive forces, hydrogen bonding, and electrostatic interactions to covalent bonding can be used to build functional hierarchical constructs. Several examples and novel applications of such systems will be discussed, including oriented channel systems, chemical sensors, and hierarchical pore systems for catalytic reactions.


2016 ◽  
Vol 52 (54) ◽  
pp. 8413-8416 ◽  
Author(s):  
Di-Ming Chen ◽  
Jia-Yue Tian ◽  
Chun-Sen Liu ◽  
Miao Du

The robustness and gas sorption performance of a coordination framework can be greatly improved by incorporating size-matching molecular building blocks.


2021 ◽  
Vol 9 (8) ◽  
pp. 4348-4378
Author(s):  
Vishnu Unnikrishnan ◽  
Omid Zabihi ◽  
Mojtaba Ahmadi ◽  
Quanxiang Li ◽  
Patrick Blanchard ◽  
...  

Metal–organic frameworks (MOFs) have emerged as a new class of crystalline nanomaterials with ultrahigh porosities and high internal surface areas.


2021 ◽  
Author(s):  
Alexander Thom ◽  
David Madden ◽  
Rocio Bueno-Perez ◽  
Ali Al Shakhs ◽  
Ciaran Lennon ◽  
...  

To achieve optimal performance in gas storage and delivery applications, metal-organic frameworks (MOFs) must combine high gravimetric and volumetric capacities. One potential route to balancing high pore volume with suitable crystal density is interpenetration, where identical nets sit within the void space of one another. Herein, we report an interpenetrated MIL-53 topology MOF, named GUF-1, where one-dimensional Sc(µ2-OH) chains are connected by 4,4’-(ethyne-1,2-diyl)dibenzoate linkers into a material that is an unusual example of an interpenetrated MOF with a rod-like secondary building unit. A combination of modulated self-assembly and grand canonical Monte Carlo simulations are used to optimise the porosity of GUF-1; H2 adsorption isotherms reveal a very high Qst for H2 of 7.6 kJ mol-1 and a working capacity of 41 g L-1 in a temperature-pressure swing system, which is comparable to benchmark MOFs. These results show that interpenetration is a viable route to high performance gas storage materials comprised of relatively simple building blocks.


2018 ◽  
Author(s):  
Chao Zhou ◽  
Louis Longley ◽  
Andraz Krajnc ◽  
Glen J. Smales ◽  
Ang Qiao ◽  
...  

To date, only several microporous, and even fewer nanoporous, glasses have been produced, always via post synthesis acid treatment of phase separated dense materials, e.g. Vycor glass. In comparison, high internal surface areas are readily achieved in crystalline materials, such as metal-organic frameworks (MOFs). It has recently been discovered that a new family of melt quenched glasses can be produced from MOFs, though they have thus far have lacked the accessible and intrinsic porosity of their crystalline precursors. Here, we report the first glasses that are permanently, and reversibly porous toward incoming gases, without post synthetic treatment. We characterized the structure of these glasses using a range of experimental techniques, and demonstrate pores in the 4-8 angstrom range. The discovery of MOF-glasses with permanent accessible porosity reveals a new category of porous glass materials, that are potentially elevated beyond conventional inorganic and organic porous glasses, by their diversity and tunability.


Sign in / Sign up

Export Citation Format

Share Document