Review on Dye-Sensitized Solar Cells (DSSCs)

2018 ◽  
pp. 29-34
Author(s):  
Anteneh Andualem ◽  
Solomon Demiss

Our planet’s community largely depends on a snug energy supply, and non-renewable energy such as fossil fuel has been serving as the most trustworthy energy source from its discovery time of 1673 till to the current century. However, non-renewable energy resources are rapidly decreased per year due to increasing the energy consumption rate. To address this issue, renewable energy chiefly photovoltaic energy has attracted much though, because it directly converts solar energy into electrical without environment pollution. For the past several years, different photovoltaic devices like inorganic organic, and hybrid solar cells are invented for different application purposes. Regardless of its high conversion rate of silicon based solar cells, the high module cost and complicated production process restricted their application. Research has been focused on alternative organic solar cells for their inherent low module cost and easy fabrication processes. From all organic solar cells, Dye-Sensitized Solar Cells (DSSCs) are the most efficient, low cost and easily implemented technology. This review paper focus on clarifying the technological meaning of DSSCs, Types of DSSCs materials, working principle, advantages, power full applications area of DSSCs, the efficiency and challenges for R&D of DSSCs to upgrade the current efficiency.

Author(s):  
Anteneh Andualem ◽  
Solomon Demiss

Our planet’s community largely depends on a snug energy supply, and non-renewable energy such as fossil fuel has been serving as the most trustworthy energy source from its discovery time of 1673 till to the current century. However, non-renewable energy resources are rapidly decreased per year due to increasing the energy consumption rate. To address this issue, renewable energy chiefly photovoltaic energy has attracted much though, because it directly converts solar energy into electrical without environment pollution. For the past several years, different photovoltaic devices like inorganic organic, and hybrid solar cells are invented for different application purposes. Regardless of its high conversion rate of silicon based solar cells, the high module cost and complicated production process restricted their application. Research has been focused on alternative organic solar cells for their inherent low module cost and easy fabrication processes. From all organic solar cells, Dye-Sensitized Solar Cells (DSSCs) are the most efficient, low cost and easily implemented technology. This review paper focus on clarifying the technological meaning of DSSCs, Types of DSSCs materials, working principle, advantages, power full applications area of DSSCs, the efficiency and challenges for R&D of DSSCs to upgrade the current efficiency.


2020 ◽  
pp. 16-21
Author(s):  
PHITCHAPHORN KHAMMEE ◽  
YUWALEE UNPAPROM ◽  
UBONWAN SUBHASAEN ◽  
RAMESHPRABU RAMARAJ

Recently, dye-sensitized solar cells (DSSC) have concerned significant attention attributable to their material preparation process, architectural and environmental compatibility, also low cost and effective photoelectric conversion efficiency. Therefore, this study aimed to use potential plant materials for DSSC. This research presents the extraction of natural pigments from yellow cotton flowers (Cochlospermum regium). In addition, the natural pigments were revealed that outstanding advantages, including a wide absorption range (visible light), easy extraction method, safe, innocuous pigments, inexpensive, complete biodegradation and ecofriendly. Methanol was used as a solvent extraction for the yellow cotton flower. The chlorophylls and carotenoid pigments extractions were estimated by a UV-visible spectrometer. The chlorophyll-a, chlorophyll-b, and carotenoid yield were 0.719±0.061 µg/ml, 1.484±0.107 µg/ml and 7.743±0.141 µg/ml, respectively. Thus, this study results suggested that yellow cotton flowers containing reasonable amounts appealable in the DSSC production.


Nanoscale ◽  
2014 ◽  
Vol 6 (23) ◽  
pp. 14433-14440 ◽  
Author(s):  
Sheng-qi Guo ◽  
Tian-zeng Jing ◽  
Xiao Zhang ◽  
Xiao-bing Yang ◽  
Zhi-hao Yuan ◽  
...  

In this work, we report the synthesis of mesoporous Bi2S3 nanorods under hydrothermal conditions without additives, and investigated their catalytic activities as the CE in DSCs by I–V curves and tested conversion efficiency.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Yuancheng Qin ◽  
Qiang Peng

Dye-sensitized solar cells (DSSCs) have attracted considerable attention in recent years due to the possibility of low-cost conversion of photovoltaic energy. The DSSCs-based ruthenium complexes as sensitizers show high efficiency and excellent stability, implying potential practical applications. This review focuses on recent advances in design and preparation of efficient ruthenium sensitizers and their applications in DSSCs, including thiocyanate ruthenium sensitizers and thiocyanate-free ruthenium sensitizers.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Saeid Vafaei ◽  
Kazuhiro Manseki ◽  
Soki Horita ◽  
Masaki Matsui ◽  
Takashi Sugiura

We present for the first time a synthetic method of obtaining 1D TiO2 nanorods with sintering methods using bundle-shaped 3D rutile TiO2 particles (3D BR-TiO2) with the dimensions of around 100 nm. The purpose of this research is (i) to control crystallization of the mixture of two kinds of TiO2 semiconductor nanocrystals, that is, 3D BR-TiO2 and spherical anatase TiO2 (SA-TiO2) on FTO substrate via sintering process and (ii) to establish a new method to create photoanodes in dye-sensitized solar cells (DSSCs). In addition, we focus on the preparation of low-cost and environmentally friendly titania electrode by adopting the “water-based” nanofluids. Our results provide useful guidance on how to improve the photovoltaic performance by reshaping the numerous 3D TiO2 particles to 1D TiO2-based electrodes with sintering technique.


Sign in / Sign up

Export Citation Format

Share Document