scholarly journals Effect of dietary energy, protein, and a versatile enzyme on hen performance, egg solids, egg composition, and egg quality of Hy-Line W-36 hens during second cycle, phase two

2009 ◽  
Vol 18 (1) ◽  
pp. 43-53 ◽  
Author(s):  
P. Gunawardana ◽  
D.A. Roland ◽  
M.M. Bryant
2007 ◽  
Vol 44 (1) ◽  
pp. 52-57 ◽  
Author(s):  
Guangbing Wu ◽  
Priyantha Gunawardana ◽  
Matilda M. Bryant ◽  
Robert A. Voitle ◽  
David A. Roland, Sr.

2009 ◽  
Vol 46 (4) ◽  
pp. 322-327 ◽  
Author(s):  
Kun Yuan ◽  
Guangbing Wu ◽  
Matilda M. Bryant ◽  
David. A. Roland, Sr.

2014 ◽  
Vol 16 (4) ◽  
pp. 381-388 ◽  
Author(s):  
PAP Ribeiro ◽  
JB Matos Jr ◽  
LJC Lara ◽  
LF Araújo ◽  
R Albuquerque ◽  
...  

Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1123 ◽  
Author(s):  
Haibo Wang ◽  
Hang Li ◽  
Fei Wu ◽  
Xinjun Qiu ◽  
Zhantao Yu ◽  
...  

The objective of this study was to evaluate the effects of dietary energy levels on growth performance, rumen fermentation and bacterial community, and meat quality of Holstein-Friesians bulls slaughtered at different ages. Thirty-six Holstein-Friesians bulls (17 months of age) were divided into a 3 × 3 factorial experiment with three energy levels (LE, ME and HE; metabolizable energy is 10.12, 10.90 and 11.68 MJ/kg, respectively) of diets, and three slaughter ages (20, 23 and 26 months). Results indicated that bulls fed with ME and HE diets had higher dry matter intake, average daily gain, and dressing percentage at 23 or 26 months of age. The ME and HE diets also reduced bacterial diversity, altered relative abundances of bacteria and produced lower concentrations of acetate, but higher butyrate and valerate concentrations in rumen fluid. Increasing in dietary energy and slaughter age increased the intramuscular fat (IMF) and water holding capacity. In summary, Holstein-Friesians bulls fed with ME and HE diets, slaughtered at 23 and 26 months of age could be a good choice to produce beef with high IMF. Slaughter age may have less influence than dietary energy in altering fermentation by increasing amylolytic bacteria and decreasing cellulolytic bacteria, and thus, further affecting meat quality.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gregory M. Weber ◽  
Jill Birkett ◽  
Kyle Martin ◽  
Doug Dixon ◽  
Guangtu Gao ◽  
...  

Abstract Background Transcription is arrested in the late stage oocyte and therefore the maternal transcriptome stored in the oocyte provides nearly all the mRNA required for oocyte maturation, fertilization, and early cleavage of the embryo. The transcriptome of the unfertilized egg, therefore, has potential to provide markers for predictors of egg quality and diagnosing problems with embryo production encountered by fish hatcheries. Although levels of specific transcripts have been shown to associate with measures of egg quality, these differentially expressed genes (DEGs) have not been consistent among studies. The present study compares differences in select transcripts among unfertilized rainbow trout eggs of different quality based on eyeing rate, among 2 year classes of the same line (A1, A2) and a population from a different hatchery (B). The study compared 65 transcripts previously reported to be differentially expressed with egg quality in rainbow trout. Results There were 32 transcripts identified as DEGs among the three groups by regression analysis. Group A1 had the most DEGs, 26; A2 had 15, 14 of which were shared with A1; and B had 12, 7 of which overlapped with A1 or A2. Six transcripts were found in all three groups, dcaf11, impa2, mrpl39_like, senp7, tfip11 and uchl1. Conclusions Our results confirmed maternal transcripts found to be differentially expressed between low- and high-quality eggs in one population of rainbow trout can often be found to overlap with DEGs in other populations. The transcripts differentially expressed with egg quality remain consistent among year classes of the same line. Greater similarity in dysregulated transcripts within year classes of the same line than among lines suggests patterns of transcriptome dysregulation may provide insight into causes of decreased viability within a hatchery population. Although many DEGs were identified, for each of the genes there is considerable variability in transcript abundance among eggs of similar quality and low correlations between transcript abundance and eyeing rate, making it highly improbable to predict the quality of a single batch of eggs based on transcript abundance of just a few genes.


Sign in / Sign up

Export Citation Format

Share Document