scholarly journals Amino Acid Limitations of Yeast Single-Cell Protein for Growing Chickens

1982 ◽  
Vol 61 (2) ◽  
pp. 337-344 ◽  
Author(s):  
N.J. DAGHIR ◽  
J.L. SELL
Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1676
Author(s):  
Abbas Zamani ◽  
Maryam Khajavi ◽  
Masoumeh Haghbin Nazarpak ◽  
Enric Gisbert

A 60-day trial was conducted in rainbow trout (Oncorhynchus mykiss) fry (initial weight = 2.5 ± 0.6 g) to evaluate the potential use of a bacterial single-cell protein (SCP) as an alternative protein source. Five experimental diets with different levels of fishmeal replacement (0, 25, 50, 75 and 100%) and no amino acid supplementation were tested. At the end of the trial, we found that fry fed diets, replacing 25 and 50% of fishmeal with bacterial SCP, were 9.1 and 21.8% heavier, respectively, than those fed the control diet (p < 0.05), while Feed Conversion Ratio (FCR) values were also lower in comparison to the reference group. These results were also supported by Protein Efficiency Ratio (PER) and Lipid Efficiency Ratio (LER) values that improved in fish fed diets replacing 50% fishmeal by bacterial SCP. The inclusion of SCP enhanced Feed intake (FI) (p < 0.05), although FI was reduced at higher inclusion levels (>50%), which was associated to feed palatability. High levels of bacterial SCP (>50%) affected the muscular amino acid and fatty acid profiles, imbalances that were associated to their dietary content. The broken-line regression analysis using muscle DHA content and weight gain data showed that the maximum levels of fishmeal replacement by bacterial SCP were 46.9 and 52%, respectively.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Yang Gu ◽  
Yingying Hu ◽  
Caoxing Huang ◽  
Chenhuan Lai ◽  
Zhe Ling ◽  
...  

Abstract Background Autohydrolysis is an extensively investigated pretreatment method due to its environmental friendliness. During autohydrolysis, most xylan from hemicellulose can be converted into xylooligosaccharides (XOS), and cellulose in the autohydrolyzed residues can be transformed into glucose after enzymatic hydrolysis. Both of these are value-added biochemicals in the biorefining process. In this work, paper mulberry (PM), which contains abundant protein, was utilized as a raw material to coproduce XOS and single-cell protein (SCP) through autohydrolysis and fermentation technologies. Results The results showed that 8.3 g of XOS and 1.8 g of amino acids could be recovered in the autohydrolysate (based on 100 g raw material) after autohydrolysis (170 °C, 1 h). Moreover, 5.7 g of low-DP XOS along with 1.8 g of amino acids could be further obtained from the autohydrolysate after hydrolysis with endo-β-1-4-xylanase. In addition, 20.1 g of fermentable monosaccharides was recovered after hydrolyzing the autohydrolyzed PM with cellulase, which can be used to produce 4.8 g of SCP after fermentation with Candida utilis. Conclusion As a valuable application of PM, a novel process is proposed to coproduce amino acid-rich XOS and SCP through autohydrolysis. The carbohydrate of PM is effectively converted to high value-added products.


Sign in / Sign up

Export Citation Format

Share Document