scholarly journals Sprouting of bladder afferents after spinal cord injury: the role of growth inhibitory proteins at the lumbosacral spinal cord

Author(s):  
Sílvia Chambel ◽  
Raquel Oliveira ◽  
Martin Schwab ◽  
Célia Cruz
2000 ◽  
Vol 279 (1) ◽  
pp. R295-R305 ◽  
Author(s):  
Margaret A. Vizzard

These studies examined Fos protein expression in spinal cord neurons synaptically activated by stimulation of bladder afferent pathways after spinal cord injury (SCI). In urethan-anesthetized Wistar rats after SCI for 6 wk, intravesical saline distension significantly ( P ≤ 0.005) increased the number of Fos-immunoreactive (IR) cells in the rostrolumbar (L1, 38 cells/section; L2, 29 cells/section) and caudal lumbosacral (L6, 140 cells/section; S1, 110 cells/section) spinal cord compared with control animals, but Fos expression in the L5 segment was not altered. The distribution of Fos-IR cells was also altered in the lumbosacral spinal cord. Significantly greater numbers of Fos-IR cells were distributed in the dorsal commissure and medial and lateral dorsal horn after intravesical distension in SCI animals. Large percentages of parasympathetic (75%) and sympathetic (85%) preganglionic neurons also expressed Fos-IR after intravesical distension in SCI animals. These results demonstrate that bladder distension produces increased numbers and an altered distribution pattern of Fos-IR cells after SCI. This pattern resembles that after noxious irritation of the bladder in control animals. Pretreatment with capsaicin significantly reduced the number of Fos-IR cells induced by bladder distension after SCI. These data suggest that SCI can reveal an altered Fos expression pattern in response to a nonnoxious bladder stimulus that is partially mediated by capsaicin-sensitive bladder afferents.


Author(s):  
Jiaqi Bi ◽  
Jianxiong Shen ◽  
Chong Chen ◽  
Zheng Li ◽  
Haining Tan ◽  
...  

2021 ◽  
pp. 1357034X2110256
Author(s):  
Denisa Butnaru

Motility impairments resulting from spinal cord injuries and cerebrovascular accidents are increasingly prevalent in society, leading to the growing development of rehabilitative robotic technologies, among them exoskeletons. This article outlines how bodies with neurological conditions such as spinal cord injury and stroke engage in processes of re-appropriation while using exoskeletons and some of the challenges they face. The main task of exoskeletons in rehabilitative environments is either to rehabilitate or ameliorate anatomic functions of impaired bodies. In these complex processes, they also play a crucial role in recasting specific corporeal phenomenologies. For the accomplishment of these forms of corporeal re-appropriation, the role of experts is crucial. This article explores how categories such as bodily resistance, techno-inter-corporeal co-production of bodies and machines, as well as body work mark the landscape of these contemporary forms of impaired corporeality. While defending corporeal extension rather than incorporation, I argue against the figure of the ‘cyborg’ and posit the idea of ‘residual subjectivity’.


2021 ◽  
pp. 76-78
Author(s):  
Anand Sharma ◽  
Yashbir Dewan

Management of severe spasticity following penetrating brain injury is often a difcult problem. Orally administered medications generally offer limited benets. Intrathecally administered baclofen has been shown to be effective in patients with spasticity caused by spinal cord injury and stroke, however, the effectiveness of ITB for spasticity related to penetrating brain injury is not well established. We reported two cases of spastic hypertonia following gunshot injury to brain with brief review of literature upon role of intrathecal baclofen pump (ITB) in cortical spastic hypertonia


Sign in / Sign up

Export Citation Format

Share Document