inhibitory proteins
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 13)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Dorothee Kretschmer ◽  
Ricarda Breitmeyer ◽  
Cordula Gekeler ◽  
Marco Lebtig ◽  
Katja Schlatterer ◽  
...  

Neutrophil granulocytes act as a first line of defense against pathogenic staphylococci. However, Staphylococcus aureus has a remarkable capacity to survive neutrophil killing, which distinguishes it from the less-pathogenic Staphylococcus epidermidis. Both species release phenol-soluble modulin (PSM) toxins, which activate the neutrophil formyl-peptide receptor 2 (FPR2) to promote neutrophil influx and phagocytosis, and which disrupt neutrophils or their phagosomal membranes at high concentrations. We show here that the neutrophil serine proteases (NSPs) neutrophil elastase, cathepsin G and proteinase 3, which are released into the extracellular space or the phagosome upon neutrophil FPR2 stimulation, effectively degrade PSMs thereby preventing their capacity to activate and destroy neutrophils. Notably, S. aureus, but not S. epidermidis, secretes potent NSP-inhibitory proteins, Eap, EapH1, EapH2, which prevented the degradation of PSMs by NSPs. Accordingly, a S. aureus mutant lacking all three NSP inhibitory proteins was less effective in activating and destroying neutrophils and it survived less well in the presence of neutrophils than the parental strain. We show that Eap proteins promote pathology via PSM-mediated FPR2 activation since murine intraperitoneal infection with the S. aureus parental but not with the NSP inhibitors mutant strain, led to a significantly higher bacterial load in the peritoneum and kidneys of mFpr2-/- compared to wild-type mice. These data demonstrate that NSPs can very effectively detoxify some of the most potent staphylococcal toxins and that the prominent human pathogen S. aureus has developed efficient inhibitors to preserve PSM functions. Preventing PSM degradation during infection represents an important survival strategy to ensure FPR2 activation.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sergio Vicencio-Jimenez ◽  
Madison M. Weinberg ◽  
Giuliana Bucci-Mansilla ◽  
Amanda M. Lauer

Age-related hearing loss (ARHL) is a public health problem that has been associated with negative health outcomes ranging from increased frailty to an elevated risk of developing dementia. Significant gaps remain in our knowledge of the underlying central neural mechanisms, especially those related to the efferent auditory pathways. Thus, the aim of this study was to quantify and compare age-related alterations in the cholinergic olivocochlear efferent auditory neurons. We assessed, in young-adult and aged CBA mice, the number of cholinergic olivocochlear neurons, auditory brainstem response (ABR) thresholds in silence and in presence of background noise, and the expression of excitatory and inhibitory proteins in the ventral nucleus of the trapezoid body (VNTB) and in the lateral superior olive (LSO). In association with aging, we found a significant decrease in the number of medial olivocochlear (MOC) cholinergic neurons together with changes in the ratio of excitatory and inhibitory proteins in the VNTB. Furthermore, in old mice we identified a correlation between the number of MOC neurons and ABR thresholds in the presence of background noise. In contrast, the alterations observed in the lateral olivocochlear (LOC) system were less significant. The decrease in the number of LOC cells associated with aging was 2.7-fold lower than in MOC and in the absence of changes in the expression of excitatory and inhibitory proteins in the LSO. These differences suggest that aging alters the medial and lateral olivocochlear efferent pathways in a differential manner and that the changes observed may account for some of the symptoms seen in ARHL.


2021 ◽  
Author(s):  
Sandra Olenic ◽  
Lim Heo ◽  
Michael Feig ◽  
Lee Kroos

Intramembrane proteases of diverse signaling pathways use membrane-embedded active sites to cleave membrane-associated substrates. Interactions of intramembrane metalloproteases with modulators are poorly understood. Inhibition of Bacillus subtilis intramembrane metalloprotease SpoIVFB requires BofA and SpoIVFA, which transiently prevent cleavage of Pro-σK during endosporulation. Three conserved BofA residues (N48, N61, T64) in or near predicted transmembrane segment (TMS) 2 were found to be required for SpoIVFB inhibition. Disulfide cross-linking indicated that BofA TMS2 occupies the SpoIVFB active site region. BofA and SpoIVFA neither prevented SpoIVFB from interacting with Pro-σK in co-purification assays nor interfered with cross-linking between the C-terminal regions of Pro-σK and SpoIVFB. However, BofA and SpoIVFA did interfere with cross-linking between the N-terminal Proregion of Pro-σK and the SpoIVFB active site region and interdomain linker. A BofA variant lacking predicted TMS1, in combination with SpoIVFA, was less effective at interfering with some of the cross-links and slightly less effective at inhibiting cleavage of Pro-σK by SpoIVFB. A structural model was built of SpoIVFB in complex with BofA and parts of SpoIVFA and Pro-σK, using partial homology and constraints from cross-linking and co-evolutionary analyses. The model predicts that N48 in BofA TMS2 interacts with T64 (and possibly N61) of BofA to stabilize a membrane-embedded C-terminal region. SpoIVFA is predicted to bridge the BofA C-terminal region and SpoIVFB. Thus, the two inhibitory proteins block access of the Pro-σK N-terminal region to the SpoIVFB active site region. Our findings may inform efforts to develop selective inhibitors of intramembrane metalloproteases.


2020 ◽  
Vol 32 (9) ◽  
pp. 636-655 ◽  
Author(s):  
Maya A. Olshina ◽  
Galina Arkind ◽  
Fanindra Kumar Deshmukh ◽  
Irit Fainer ◽  
Mark Taranavsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document