scholarly journals Exoskeletons, Rehabilitation and Bodily Capacities

2021 ◽  
pp. 1357034X2110256
Author(s):  
Denisa Butnaru

Motility impairments resulting from spinal cord injuries and cerebrovascular accidents are increasingly prevalent in society, leading to the growing development of rehabilitative robotic technologies, among them exoskeletons. This article outlines how bodies with neurological conditions such as spinal cord injury and stroke engage in processes of re-appropriation while using exoskeletons and some of the challenges they face. The main task of exoskeletons in rehabilitative environments is either to rehabilitate or ameliorate anatomic functions of impaired bodies. In these complex processes, they also play a crucial role in recasting specific corporeal phenomenologies. For the accomplishment of these forms of corporeal re-appropriation, the role of experts is crucial. This article explores how categories such as bodily resistance, techno-inter-corporeal co-production of bodies and machines, as well as body work mark the landscape of these contemporary forms of impaired corporeality. While defending corporeal extension rather than incorporation, I argue against the figure of the ‘cyborg’ and posit the idea of ‘residual subjectivity’.

2015 ◽  
Vol 2015 ◽  
pp. 1-24 ◽  
Author(s):  
Rita C. Assunção-Silva ◽  
Eduardo D. Gomes ◽  
Nuno Sousa ◽  
Nuno A. Silva ◽  
António J. Salgado

Spinal cord injury (SCI) is a central nervous system- (CNS-) related disorder for which there is yet no successful treatment. Within the past several years, cell-based therapies have been explored for SCI repair, including the use of pluripotent human stem cells, and a number of adult-derived stem and mature cells such as mesenchymal stem cells, olfactory ensheathing cells, and Schwann cells. Although promising, cell transplantation is often overturned by the poor cell survival in the treatment of spinal cord injuries. Alternatively, the therapeutic role of different cells has been used in tissue engineering approaches by engrafting cells with biomaterials. The latter have the advantages of physically mimicking the CNS tissue, while promoting a more permissive environment for cell survival, growth, and differentiation. The roles of both cell- and biomaterial-based therapies as single therapeutic approaches for SCI repair will be discussed in this review. Moreover, as the multifactorial inhibitory environment of a SCI suggests that combinatorial approaches would be more effective, the importance of using biomaterials as cell carriers will be herein highlighted, as well as the recent advances and achievements of these promising tools for neural tissue regeneration.


2021 ◽  
pp. 097275312110463
Author(s):  
Gurwattan S. Miranpuri ◽  
Parul Bali ◽  
Justyn Nguyen ◽  
Jason J Kim ◽  
Shweta Modgil ◽  
...  

Spinal cord injuries incite varying degrees of symptoms in patients, ranging from weakness and incoordination to paralysis. Common amongst spinal cord injury (SCI) patients, neuropathic pain (NP) is a debilitating medical condition. Unfortunately, there remain many clinical impediments in treating NP because there is a lack of understanding regarding the mechanisms behind SCI-induced NP (SCINP). Given that more than 450,000 people in the United States alone suffer from SCI, it is unsatisfactory that current treatments yield poor results in alleviating and treating NP. In this review, we briefly discussed the models of SCINP along with the mechanisms of NP progression. Further, current treatment modalities are herein explored for SCINP involving pharmacological interventions targeting glia cells and astrocytes. The studies presented in this review provide insight for new directions regarding SCINP alleviation. Given the severity and incapacitating effects of SCINP, it is imperative to study the pathways involved and find new therapeutic targets in coordination with stem cell research, and to develop a new gold-standard in SCINP treatment.


2020 ◽  
pp. 0271678X2096185
Author(s):  
Yimin Zou

At least two-thirds of spinal cord injury cases are anatomically incomplete, without complete spinal cord transection, although the initial injuries cause complete loss of sensory and motor functions. The malleability of neural circuits and networks allows varied extend of functional restoration in some individuals after successful rehabilitative training. However, in most cases, the efficiency and extent are both limited and uncertain, largely due to the many obstacles of repair. The restoration of function after anatomically incomplete injury is in part made possible by the growth of new axons or new axon branches through the spared spinal cord tissue and the new synaptic connections they make, either along the areas they grow through or in the areas they terminate. This review will discuss new progress on the understanding of the role of axon guidance molecules, particularly the Wnt family proteins, in spinal cord injury and how the knowledge and tools of axon guidance can be applied to increase the potential of recovery. These strategies, combined with others, such as neuroprotection and rehabilitation, may bring new promises. The recovery strategies for anatomically incomplete spinal cord injuries are relevant and may be applicable to traumatic brain injury and stroke.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Brian A. Karamian ◽  
Nicholas Siegel ◽  
Blake Nourie ◽  
Mijail D. Serruya ◽  
Robert F. Heary ◽  
...  

AbstractElectrical stimulation is used to elicit muscle contraction and can be utilized for neurorehabilitation following spinal cord injury when paired with voluntary motor training. This technology is now an important therapeutic intervention that results in improvement in motor function in patients with spinal cord injuries. The purpose of this review is to summarize the various forms of electrical stimulation technology that exist and their applications. Furthermore, this paper addresses the potential future of the technology.


Author(s):  
Jiaqi Bi ◽  
Jianxiong Shen ◽  
Chong Chen ◽  
Zheng Li ◽  
Haining Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document