scholarly journals Correlation between 50-kHz band activity in primary auditory cortex and social interaction in rats

2014 ◽  
Vol 8 ◽  
Author(s):  
Kim Hengjun J ◽  
Cho Gyunggoo ◽  
Song Youngkyu ◽  
Chun Song-I ◽  
Lim Dongwan ◽  
...  
2012 ◽  
Vol 107 (12) ◽  
pp. 3458-3467 ◽  
Author(s):  
Iris Steinmann ◽  
Alexander Gutschalk

Human functional MRI (fMRI) and magnetoencephalography (MEG) studies indicate a pitch-specific area in lateral Heschl's gyrus. Single-cell recordings in monkey suggest that sustained-firing, pitch-specific neurons are located lateral to primary auditory cortex. We reevaluated whether pitch strength contrasts reveal sustained pitch-specific responses in human auditory cortex. Sustained BOLD activity in auditory cortex was found for iterated rippled noise (vs. noise or silence) but not for regular click trains (vs. jittered click trains or silence). In contrast, iterated rippled noise and click trains produced similar pitch responses in MEG. Subsequently performed time-frequency analysis of the MEG data suggested that the dissociation of cortical BOLD activity between iterated rippled noise and click trains is related to theta band activity. It appears that both sustained BOLD and theta activity are associated with slow non-pitch-specific stimulus fluctuations. BOLD activity in the inferior colliculus was sustained for both stimulus types and varied neither with pitch strength nor with the presence of slow stimulus fluctuations. These results suggest that BOLD activity in auditory cortex is much more sensitive to slow stimulus fluctuations than to constant pitch, compromising the accessibility of the latter. In contrast, pitch-related activity in MEG can easily be separated from theta band activity related to slow stimulus fluctuations.


2013 ◽  
Vol 40 (4) ◽  
pp. 365
Author(s):  
Qiao-Zhen QI ◽  
Wen-Juan SI ◽  
Feng LUO ◽  
Xin WANG

Author(s):  
Vidhusha Srinivasan ◽  
N. Udayakumar ◽  
Kavitha Anandan

Background: The spectrum of autism encompasses High Functioning Autism (HFA) and Low Functioning Autism (LFA). Brain mapping studies have revealed that autism individuals have overlaps in brain behavioural characteristics. Generally, high functioning individuals are known to exhibit higher intelligence and better language processing abilities. However, specific mechanisms associated with their functional capabilities are still under research. Objective: This work addresses the overlapping phenomenon present in autism spectrum through functional connectivity patterns along with brain connectivity parameters and distinguishes the classes using deep belief networks. Methods: The task-based functional Magnetic Resonance Images (fMRI) of both high and low functioning autistic groups were acquired from ABIDE database, for 58 low functioning against 43 high functioning individuals while they were involved in a defined language processing task. The language processing regions of the brain, along with Default Mode Network (DMN) have been considered for the analysis. The functional connectivity maps have been plotted through graph theory procedures. Brain connectivity parameters such as Granger Causality (GC) and Phase Slope Index (PSI) have been calculated for the individual groups. These parameters have been fed to Deep Belief Networks (DBN) to classify the subjects under consideration as either LFA or HFA. Results: Results showed increased functional connectivity in high functioning subjects. It was found that the additional interaction of the Primary Auditory Cortex lying in the temporal lobe, with other regions of interest complimented their enhanced connectivity. Results were validated using DBN measuring the classification accuracy of 85.85% for high functioning and 81.71% for the low functioning group. Conclusion: Since it is known that autism involves enhanced, but imbalanced components of intelligence, the reason behind the supremacy of high functioning group in language processing and region responsible for enhanced connectivity has been recognized. Therefore, this work that suggests the effect of Primary Auditory Cortex in characterizing the dominance of language processing in high functioning young adults seems to be highly significant in discriminating different groups in autism spectrum.


2021 ◽  
Author(s):  
Diana Amaro ◽  
Dardo N. Ferreiro ◽  
Benedikt Grothe ◽  
Michael Pecka

Cell Reports ◽  
2021 ◽  
Vol 35 (11) ◽  
pp. 109242
Author(s):  
Felix Schneider ◽  
Fabien Balezeau ◽  
Claudia Distler ◽  
Yukiko Kikuchi ◽  
Jochem van Kempen ◽  
...  

2010 ◽  
Vol 107 (31) ◽  
pp. 13900-13905 ◽  
Author(s):  
E. de Villers-Sidani ◽  
L. Alzghoul ◽  
X. Zhou ◽  
K. L. Simpson ◽  
R. C. S. Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document