scholarly journals Recovery of functional and structural age-related changes in the rat primary auditory cortex with operant training

2010 ◽  
Vol 107 (31) ◽  
pp. 13900-13905 ◽  
Author(s):  
E. de Villers-Sidani ◽  
L. Alzghoul ◽  
X. Zhou ◽  
K. L. Simpson ◽  
R. C. S. Lin ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Patrice Voss ◽  
Maryse Thomas ◽  
You Chien Chou ◽  
José Miguel Cisneros-Franco ◽  
Lydia Ouellet ◽  
...  

We used the rat primary auditory cortex (A1) as a model to probe the effects of cholinergic enhancement on perceptual learning and auditory processing mechanisms in both young and old animals. Rats learned to perform a two-tone frequency discrimination task over the course of two weeks, combined with either the administration of a cholinesterase inhibitor or saline. We found that while both age groups learned the task more quickly through cholinergic enhancement, the young did so by improving target detection, whereas the old did so by inhibiting erroneous responses to nontarget stimuli. We also found that cholinergic enhancement led to marked functional and structural changes within A1 in both young and old rats. Importantly, we found that several functional changes observed in the old rats, particularly those relating to the processing and inhibition of nontargets, produced cortical processing features that resembled those of young untrained rats more so than those of older adult rats. Overall, these findings demonstrate that combining auditory training with neuromodulation of the cholinergic system can restore many of the auditory cortical functional deficits observed as a result of normal aging and add to the growing body of evidence demonstrating that many age-related perceptual and neuroplastic changes are reversible.


Author(s):  
Dustin H. Brewton ◽  
Jamiela Kokash ◽  
Oliva Jimenez ◽  
Eloy R. Pena ◽  
Khaleel A. Razak

2017 ◽  
Vol 22 (2) ◽  
pp. 96-103 ◽  
Author(s):  
Qiuhong Huang ◽  
Yongkang Ou ◽  
Hao Xiong ◽  
Haidi Yang ◽  
Zhigang Zhang ◽  
...  

Hypothesis: The miR-34a/Bcl-2 signaling pathway may play a role in the mechanisms related to age-related hearing loss (AHL) in the auditory cortex. Background: The auditory cortex plays a key role in the recognition and processing of complex sound. It is difficult to explain why patients with AHL have poor speech recognition, so increasing numbers of studies have focused on its central change. Although micro (mi)RNAs in the central nervous system have recently been increasingly reported to be associated with age-related diseases, the molecular mechanisms of AHL in the auditory cortex are not fully understood. Methods: The auditory brainstem response was used to assess the hearing ability of C57BL/6 mice, and q-PCR, immunohistochemistry, and Western blotting were used to detect the expression levels of miR-34a and Bcl-2 in the mouse auditory cortex. TUNEL and DNA fragmentation were adopted to detect the apoptosis of neurons in the auditory cortex. To verify the relationship of miR-34a and Bcl-2, we transfected an miR-34a mimic or miR-34a inhibitor into primary auditory cortex neurons. Results: In this study, miR-34a/Bcl-2 signaling was examined in auditory cortex neurons during aging. miR-34a and apoptosis increased in the auditory cortex neurons of C57BL/6 mice with aging, whereas an age-related decrease in Bcl-2 was determined. In the primary neurons of the auditory cortex, miR-34a overexpression inhibited Bcl-2, leading to an increase in apoptosis. Moreover, miR-34a knockdown increased Bcl-2 expression and diminished apoptosis. Conclusion: Our results support a link between age-related apoptosis in auditory cortex neurons and miR-34a/Bcl-2 signaling, which may serve as a potential mechanism of the expression of AHL in the auditory cortex.


2020 ◽  
Author(s):  
Vanessa C. Irsik ◽  
Ala Almanaseer ◽  
Ingrid S. Johnsrude ◽  
Björn Herrmann

AbstractMany older listeners have difficulty understanding speech in noise, when cues to speech-sound identity are less redundant. The amplitude envelope of speech fluctuates dramatically over time, and features such as the rate of amplitude change at onsets (attack) and offsets (decay) signal critical information about the identity of speech sounds. Aging is also thought to be accompanied by increases in cortical excitability, which may differentially alter sensitivity to envelope dynamics. Here, we recorded electroencephalography in younger and older human adults (of both sexes) to investigate how aging affects neural synchronization to 4-Hz amplitude-modulated noises with different envelope shapes (ramped: slow attack & sharp decay; damped: sharp attack & slow decay). We observed that subcortical responses did not differ between age groups, whereas older compared to younger adults exhibited larger cortical responses to sound onsets, consistent with an increase in auditory cortical excitability. Older adults showed increased neural synchronization when the envelope shape was damped compared to ramped, whereas younger participants showed the opposite pattern. Furthermore, the response shape of synchronized neural activity was more sinusoidal in younger individuals, whereas synchronized activity in older adults was less sinusoidal and more peaked. The current results suggest that age-related changes in the excitability of auditory cortex alter responses to envelope dynamics, and this may be part of the reason why older adults experience difficulty understanding speech in noise.Significance StatementMany adults above age 50 report difficulty understanding speech when there is background noise, which can trigger social withdrawal and negative psychosocial health outcomes. The difficulty may be related to age-related changes in how the brain processes temporal sound features. We tested younger and older people on their sensitivity to different envelope shapes, using EEG. Our results demonstrate that aging is associated with heightened sensitivity to sounds with a sharp attack and gradual decay, and sharper neural responses that deviate from the sinusoidal features of the stimulus, perhaps reflecting increased excitability in the aged auditory cortex. Altered responses to temporal sound features may be part of the reason why older adults often experience difficulty understanding speech in social situations.


2007 ◽  
Vol 70 (12) ◽  
pp. 1051-1059 ◽  
Author(s):  
Daniel Sánchez-Zuriaga ◽  
Nuria Martí-Gutiérrez ◽  
Maria Ángeles Pérez De La Cruz ◽  
Maria Rosa Peris-Sanchis

2021 ◽  
Author(s):  
Björn Herrmann ◽  
Burkhard Maess ◽  
Ingrid S. Johnsrude

AbstractSensitivity to repetitions in sound amplitude and frequency is crucial for sound perception. As with other aspects of sound processing, sensitivity to such patterns may change with age, and may help explain some age-related changes in hearing such as segregating speech from background sound. We recorded magnetoencephalography to characterize differences in the processing of sound patterns between younger and older adults. We presented tone sequences that either contained a pattern (made of a repeated set of tones) or did not contain a pattern. We show that auditory cortex in older, compared to younger, adults is hyperresponsive to sound onsets, but that sustained neural activity in auditory cortex, indexing the processing of a sound pattern, is reduced. Hence, the sensitivity of neural populations in auditory cortex fundamentally differs between younger and older individuals, overresponding to sound onsets, while underresponding to patterns in sounds. This may help to explain some age-related changes in hearing such as increased sensitivity to distracting sounds and difficulties tracking speech in the presence of other sound.


Sign in / Sign up

Export Citation Format

Share Document