scholarly journals Autophagy Regulates Fungal Virulence and Sexual Reproduction in Cryptococcus neoformans

Author(s):  
Su-Ting Jiang ◽  
An-Ni Chang ◽  
Lian-Tao Han ◽  
Jie-Shu Guo ◽  
Yuan-Hong Li ◽  
...  
2020 ◽  
Vol 8 (11) ◽  
pp. 1730
Author(s):  
Qi-Kun Yu ◽  
Lian-Tao Han ◽  
Yu-Juan Wu ◽  
Tong-Bao Liu

Cryptococcus neoformans is a basidiomycete human fungal pathogen causing lethal meningoencephalitis, mainly in immunocompromised patients. Oxidoreductases are a class of enzymes that catalyze redox, playing a crucial role in biochemical reactions. In this study, we identified one Cryptococcus oxidoreductase-like protein-encoding gene OLP1 and investigated its role in the sexual reproduction and virulence of C. neoformans. Gene expression patterns analysis showed that the OLP1 gene was expressed in each developmental stage of Cryptococcus, and the Olp1 protein was located in the cytoplasm of Cryptococcus cells. Although it produced normal major virulence factors such as melanin and capsule, the olp1Δ mutants showed growth defects on the yeast extract peptone dextrose (YPD) medium supplemented with lithium chloride (LiCl) and 5-fluorocytosine (5-FC). The fungal mating analysis showed that Olp1 is also essential for fungal sexual reproduction, as olp1Δ mutants show significant defects in hyphae growth and basidiospores production during bisexual reproduction. The fungal nuclei imaging showed that during the bilateral mating of olp1Δ mutants, the nuclei failed to undergo meiosis after fusion in the basidia, indicating that Olp1 is crucial for regulating meiosis during mating. Moreover, Olp1 was also found to be required for fungal virulence in C. neoformans, as the olp1Δ mutants showed significant virulence attenuation in a murine inhalation model. In conclusion, our results showed that the oxidoreductase-like protein Olp1 is required for both fungal sexual reproduction and virulence in C. neoformans.


2011 ◽  
Vol 10 (6) ◽  
pp. 791-802 ◽  
Author(s):  
Tong-Bao Liu ◽  
Yina Wang ◽  
Sabriya Stukes ◽  
Qing Chen ◽  
Arturo Casadevall ◽  
...  

ABSTRACTCryptococcus neoformansis the leading cause of fungal meningitis in immunocomprised populations. Although extensive studies have been conducted on signal transduction pathways important for fungal sexual reproduction and virulence, how fungal virulence is regulated during infection is still not understood. In this study, we identified the F-box protein Fbp1, which contains a putative F-box domain and 12 leucine-rich repeats (LRR). Althoughfbp1mutants showed normal growth and produced normal major virulence factors, such as melanin and capsule, Fbp1 was found to be essential for fungal virulence, asfbp1mutants were avirulent in a murine systemic-infection model. Fbp1 is also important for fungal sexual reproduction. Basidiospore production was blocked in bilateral mating betweenfbp1mutants, even though normal dikaryotic hyphae were observed during mating.In vitroassays of stress responses revealed thatfbp1mutants are hypersensitive to SDS, but not calcofluor white (CFW) or Congo red, indicating that Fbp1 may regulate cell membrane integrity. Fbp1 physically interacts with Skp1 homologues in bothSaccharomyces cerevisiaeandC. neoformansvia its F-box domain, suggesting it may function as part of an SCF (Skp1, Cullins, F-box proteins) E3 ligase. Overall, our study revealed that the F-box protein Fbp1 is essential for fungal sporulation and virulence inC. neoformans, which likely represents a conserved novel virulence control mechanism that involves the SCF E3 ubiquitin ligase-mediated proteolysis pathway.


mBio ◽  
2010 ◽  
Vol 1 (1) ◽  
Author(s):  
Chaoyang Xue ◽  
Tongbao Liu ◽  
Lydia Chen ◽  
Wenjun Li ◽  
Iris Liu ◽  
...  

ABSTRACTCryptococcus neoformansandCryptococcus gattiiare globally distributed human fungal pathogens and the leading causes of fungal meningitis. Recent studies reveal thatmyo-inositol is an important factor for fungal sexual reproduction. ThatC. neoformanscan utilizemyo-inositol as a sole carbon source and the existence of abundant inositol in the human central nervous system suggest that inositol is important forCryptococcusdevelopment and virulence. In accord with this central importance of inositol, an expandedmyo-inositol transporter (ITR) gene family has been identified inCryptococcus. This gene family contains two phylogenetically distinct groups, with a total of 10 or more members inC. neoformansand at least six members in the sibling speciesC. gattii. These inositol transporter genes are differentially expressed under inositol-inducing conditions based on quantitative real-time PCR analyses. Expression ofITRgenes in aSaccharomyces cerevisiaeitr1 itr2mutant lacking inositol transport can complement the slow-growth phenotype of this strain, confirming thatITRgenes arebona fideinositol transporters. Gene mutagenesis studies reveal that the Itr1 and Itr1A transporters are important formyo-inositol stimulation of mating and that functional redundancies among themyo-inositol transporters likely exist. Deletion of the inositol 1-phosphate synthase geneINO1in anitr1oritr1amutant background compromised virulence in a murine inhalation model, indicating the importance of inositol sensing and acquisition for fungal infectivity. Our study provides a platform for further understanding the roles of inositol in fungal physiology and virulence.IMPORTANCECryptococcus neoformansis an AIDS-associated human fungal pathogen that causes over 1 million cases of meningitis annually and is the leading cause of fungal meningitis in immunosuppressed patients. The initial cryptococcal infection is caused predominantly via inhalation of sexual spores or desiccated yeast cells from the environment. How this fungus completes its sexual cycle and produces infectious spores in nature and why it frequently infects the central nervous system to cause fatal meningitis are critical questions that remain to be understood. In this study, we demonstrate that inositol acquisition is important not only for fungal sexual reproduction but also for fungal virulence. We identified an expanded inositol transporter gene family that contains over 10 members, important for both fungal sexual reproduction and virulence. Our work contributes to our understanding of how fungi respond to the environmental inositol availability and its impact on sexual reproduction and virulence.


Author(s):  
Ting Wu ◽  
Cheng-Li Fan ◽  
Lian-Tao Han ◽  
Yuan-Bing Guo ◽  
Tong-Bao Liu

Cryptococcus neoformans is an opportunistic yeast-like pathogen that mainly infects immunocompromised individuals and causes fatal meningitis. Sexual reproduction can promote the exchange of genetic material between different strains of C. neoformans, which is one of the reasons leading to the emergence of highly pathogenic and drug-resistant strains of C. neoformans. Although much research has been done on the regulation mechanism of Cryptococcus sexual reproduction, there are few studies on the sexual reproduction regulation of Cryptococcus by the ubiquitin-proteasome system. This study identified an F-box protein, Cdc4, which contains a putative F-box domain and eight WD40 domains. The expression pattern analysis showed that the CDC4 gene was expressed in various developmental stages of C. neoformans, and the Cdc4 protein was localized in the nucleus of cryptococcal cells. In vitro stress responses assays showed that the CDC4 overexpression strains are sensitive to SDS and MMS but not Congo red, implying that Cdc4 may regulate the cell membrane integrity and repair of DNA damage of C. neoformans. Fungal virulence assay showed that although the cdc4Δ mutant grows normally and can produce typical virulence factors such as capsule and melanin, the cdc4Δ mutant completely loses its pathogenicity in a mouse systemic-infection model. Fungal mating assays showed that Cdc4 is also essential for fungal sexual reproduction in C. neoformans. Although normal mating hyphae were observed during mating, the basidiospores’ production was blocked in bilateral mating between cdc4Δ mutants. Fungal nuclei development assay showed that the nuclei failed to undergo meiosis after fusion inside the basidia during the bilateral mating of cdc4Δ mutants, indicating that Cdc4 is critical to regulating meiosis during cryptococcal mating. In summary, our study revealed that the F-box protein Cdc4 is critical for fungal virulence and sexual reproduction in C. neoformans.


2013 ◽  
Vol 82 (2) ◽  
pp. 557-568 ◽  
Author(s):  
Tong-Bao Liu ◽  
Chaoyang Xue

ABSTRACTCryptococcus neoformansis a human fungal pathogen that often causes lung and brain infections in immunocompromised patients, with a high fatality rate. Our previous results showed that an F-box protein, Fbp1, is essential forCryptococcusvirulence independent of the classical virulence factors, suggesting a novel virulence control mechanism. In this study, we show that Fbp1 is part of the ubiquitin-proteasome system, and we further investigated the mechanism of Fbp1 function during infection. Time course studies revealed that thefbp1Δ mutant causes little damage in the infected lung and that the fungal burden in the lung remains at a low but persistent level throughout infection. Thefbp1Δ mutant cannot disseminate to other organs following pulmonary infection in the murine inhalation model of cryptococcosis but still causes brain infection in a murine intravenous injection model, suggesting that the block of dissemination of thefbp1Δ mutant is due to its inability to leave the lung. Thefbp1Δ mutant showed a defect in intracellular proliferation after phagocytosis in aCryptococcus-macrophage interaction assay, which likely contributes to its virulence attenuation. To elucidate the molecular basis of the SCF(Fbp1) E3 ligase function, we analyzed potential Fbp1 substrates based on proteomic approaches combined with phenotypic analysis. One substrate, the inositol phosphosphingolipid-phospholipase C1 (Isc1), is required for fungal survival inside macrophage cells, which is consistent with the role of Fbp1 in regulatingCryptococcus-macrophage interaction and fungal virulence. Our results thus reveal a new determinant of fungal virulence that involves the posttranslational regulation of inositol sphingolipid biosynthesis.


Nature ◽  
2005 ◽  
Vol 434 (7036) ◽  
pp. 1017-1021 ◽  
Author(s):  
Xiaorong Lin ◽  
Christina M. Hull ◽  
Joseph Heitman

2019 ◽  
Author(s):  
Giuseppe Ianiri ◽  
Yufeng “Francis” Fang ◽  
Tim A. Dahlmann ◽  
Shelly Applen Clancey ◽  
Guilhem Janbon ◽  
...  

AbstractThe MAT locus of Cryptococcus neoformans has a bipolar organization characterized by an unusually large structure, spanning over 100 kb. MAT genes have been characterized by functional genetics as being involved in sexual reproduction and virulence. However, classical gene replacement failed to achieve mutants for five MAT genes (RPL22, RPO41, MYO2, PRT1, RPL39), indicating that they are likely essential. In the present study, targeted gene replacement was performed in a diploid strain for both the α and a alleles of the ribosomal genes RPL22 and RPL39. Mendelian analysis of the progeny confirmed that both RPL22 and RPL39 are essential for viability. Ectopic integration of the RPL22 allele of opposite MAT identity in the heterozygous RPL22a/rpl22αΔ or RPL22α/rpl22aΔ mutant strains failed to complement their essential phenotype. Evidence suggests that this is due to differential expression of the RPL22 genes, and an RNAi-dependent mechanism that contributes to control RPL22a expression. Furthermore, via CRISPR/Cas9 technology the RPL22 alleles were exchanged in haploid MATα and MATa strains of C. neoformans. These RPL22 exchange strains displayed morphological and genetic defects during bilateral mating. These results contribute to elucidate functions of C. neoformans essential mating type genes that may constitute a type of imprinting system to promote inheritance of nuclei of both mating types.


Sign in / Sign up

Export Citation Format

Share Document