scholarly journals Transcriptional, Electrophysiological, and Metabolic Characterizations of hESC-Derived First and Second Heart Fields Demonstrate a Potential Role of TBX5 in Cardiomyocyte Maturation

Author(s):  
Arash Pezhouman ◽  
Ngoc B. Nguyen ◽  
Alexander J. Sercel ◽  
Thang L. Nguyen ◽  
Ali Daraei ◽  
...  

Background: Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) can be used as a source for cell delivery to remuscularize the heart after myocardial infarction. Despite their therapeutic potential, the emergence of ventricular arrhythmias has limited their application. We previously developed a double reporter hESC line to isolate first heart field (FHF: TBX5+NKX2-5+) and second heart field (SHF: TBX5-NKX2-5+) CMs. Herein, we explore the role of TBX5 and its effects on underlying gene regulatory networks driving phenotypical and functional differences between these two populations.Methods: We used a combination of tools and techniques for rapid and unsupervised profiling of FHF and SHF populations at the transcriptional, translational, and functional level including single cell RNA (scRNA) and bulk RNA sequencing, atomic force and quantitative phase microscopy, respirometry, and electrophysiology.Results: Gene ontology analysis revealed three biological processes attributed to TBX5 expression: sarcomeric structure, oxidative phosphorylation, and calcium ion handling. Interestingly, migratory pathways were enriched in SHF population. SHF-like CMs display less sarcomeric organization compared to FHF-like CMs, despite prolonged in vitro culture. Atomic force and quantitative phase microscopy showed increased cellular stiffness and decreased mass distribution over time in FHF compared to SHF populations, respectively. Electrophysiological studies showed longer plateau in action potentials recorded from FHF-like CMs, consistent with their increased expression of calcium handling genes. Interestingly, both populations showed nearly identical respiratory profiles with the only significant functional difference being higher ATP generation-linked oxygen consumption rate in FHF-like CMs. Our findings suggest that FHF-like CMs display more mature features given their enhanced sarcomeric alignment, calcium handling, and decreased migratory characteristics. Finally, pseudotime analyses revealed a closer association of the FHF population to human fetal CMs along the developmental trajectory.Conclusion: Our studies reveal that distinguishing FHF and SHF populations based on TBX5 expression leads to a significant impact on their downstream functional properties. FHF CMs display more mature characteristics such as enhanced sarcomeric organization and improved calcium handling, with closer positioning along the differentiation trajectory to human fetal hearts. These data suggest that the FHF CMs may be a more suitable candidate for cardiac regeneration.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 590
Author(s):  
Jennifer Cauzzo ◽  
Nikhil Jayakumar ◽  
Balpreet Singh Ahluwalia ◽  
Azeem Ahmad ◽  
Nataša Škalko-Basnet

The rapid development of nanomedicine and drug delivery systems calls for new and effective characterization techniques that can accurately characterize both the properties and the behavior of nanosystems. Standard methods such as dynamic light scattering (DLS) and fluorescent-based assays present challenges in terms of system’s instability, machine sensitivity, and loss of tracking ability, among others. In this study, we explore some of the downsides of batch-mode analyses and fluorescent labeling, while introducing quantitative phase microscopy (QPM) as a label-free complimentary characterization technique. Liposomes were used as a model nanocarrier for their therapeutic relevance and structural versatility. A successful immobilization of liposomes in a non-dried setup allowed for static imaging conditions in an off-axis phase microscope. Image reconstruction was then performed with a phase-shifting algorithm providing high spatial resolution. Our results show the potential of QPM to localize subdiffraction-limited liposomes, estimate their size, and track their integrity over time. Moreover, QPM full-field-of-view images enable the estimation of a single-particle-based size distribution, providing an alternative to the batch mode approach. QPM thus overcomes some of the drawbacks of the conventional methods, serving as a relevant complimentary technique in the characterization of nanosystems.


2017 ◽  
Vol 8 (10) ◽  
pp. 4687 ◽  
Author(s):  
Jiaji Li ◽  
Qian Chen ◽  
Jialin Zhang ◽  
Yan Zhang ◽  
Linpeng Lu ◽  
...  

2007 ◽  
Vol 90 (4) ◽  
pp. 041104 ◽  
Author(s):  
L. Miccio ◽  
D. Alfieri ◽  
S. Grilli ◽  
P. Ferraro ◽  
A. Finizio ◽  
...  

2008 ◽  
Vol 41 (1) ◽  
pp. 10-16 ◽  
Author(s):  
Gabriel Popescu ◽  
YoungKeun Park ◽  
Wonshik Choi ◽  
Ramachandra R. Dasari ◽  
Michael S. Feld ◽  
...  

2011 ◽  
Vol 16 (12) ◽  
pp. 120510 ◽  
Author(s):  
Matthew T. Rinehart ◽  
Tyler K. Drake ◽  
Francisco E. Robles ◽  
Lisa C. Rohan ◽  
David Katz ◽  
...  

2011 ◽  
Vol 140 (5) ◽  
pp. S-53 ◽  
Author(s):  
David A. Brokl ◽  
David Y. Lo ◽  
Walid E. Khalbuss ◽  
Pin Wang ◽  
Rajan K. Bista ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document