scholarly journals Automatically Constructed Neural Network Potentials for Molecular Dynamics Simulation of Zinc Proteins

2021 ◽  
Vol 9 ◽  
Author(s):  
Mingyuan Xu ◽  
Tong Zhu ◽  
John Z. H. Zhang

The development of accurate and efficient potential energy functions for the molecular dynamics simulation of metalloproteins has long been a great challenge for the theoretical chemistry community. An artificial neural network provides the possibility to develop potential energy functions with both the efficiency of the classical force fields and the accuracy of the quantum chemical methods. In this work, neural network potentials were automatically constructed by using the ESOINN-DP method for typical zinc proteins. For the four most common zinc coordination modes in proteins, the potential energy, atomic forces, and atomic charges predicted by neural network models show great agreement with quantum mechanics calculations and the neural network potential can maintain the coordination geometry correctly. In addition, MD simulation and energy optimization with the neural network potential can be readily used for structural refinement. The neural network potential is not limited by the function form and complex parameterization process, and important quantum effects such as polarization and charge transfer can be accurately considered. The algorithm proposed in this work can also be directly applied to proteins containing other metal ions.

2021 ◽  
Vol 23 (9) ◽  
pp. 5236-5243
Author(s):  
Ying Hu ◽  
Chao Xu ◽  
Linfeng Ye ◽  
Feng Long Gu ◽  
Chaoyuan Zhu

Global switching on-the-fly trajectory surface hopping molecular dynamics simulation was performed on the accurate TD-B3LYP/6-31G* potential energy surfaces for E-to-Z and Z-to-E photoisomerization of dMe-OMe-NAIP up to S1(ππ*) excitation.


2019 ◽  
Vol 21 (1) ◽  
pp. 409-417 ◽  
Author(s):  
Daniel C. Elton ◽  
Michelle Fritz ◽  
Marivi Fernández-Serra

We present a new approximate method for doing path integral molecular dynamics simulation with density functional theory and show the utility of the method for liquid water.


2000 ◽  
Vol 11 (05) ◽  
pp. 1025-1032
Author(s):  
ŞAKIR ERKOÇ

The effect of radiation damage on copper clusters has been investigated by performing molecular-dynamics simulation using empirical potential energy function for interaction between copper atoms. The external radiation is modeled by giving extra kinetic energy in the range of 5–50 eV to initially chosen atom in the cluster. It has been found that the atom having extra kinetic energy dissociates independently from the amount of given energy in the studied range.


2007 ◽  
Vol 107 (11) ◽  
pp. 2120-2132 ◽  
Author(s):  
Diogo A. R. S. Latino ◽  
Filomena F. M. Freitas ◽  
João Aires-De-Sousa ◽  
Fernando M. S. Silva Fernandes

Sign in / Sign up

Export Citation Format

Share Document