scholarly journals Mini Review: Quantum Confinement of Atomic and Molecular Clusters in Carbon Nanotubes

2021 ◽  
Vol 9 ◽  
Author(s):  
María Pilar de Lara-Castells ◽  
Alexander O. Mitrushchenkov

We overview our recent developments on a computational approach addressing quantum confinement of light atomic and molecular clusters (made of atomic helium and molecular hydrogen) in carbon nanotubes. We outline a multi-scale first-principles approach, based on density functional theory (DFT)-based symmetry-adapted perturbation theory, allowing an accurate characterization of the dispersion-dominated particle–nanotube interaction. Next, we describe a wave-function-based method, allowing rigorous fully coupled quantum calculations of the pseudo-nuclear bound states. The approach is illustrated by showing the transition from molecular aggregation to quasi-one-dimensional condensed matter systems of molecular deuterium and hydrogen as well as atomic 4He, as case studies. Finally, we present a perspective on future-oriented mixed approaches combining, e.g., orbital-free helium density functional theory (He-DFT), machine-learning parameterizations, with wave-function-based descriptions.

2016 ◽  
Vol 200 ◽  
pp. 87-95 ◽  
Author(s):  
Wenhui Mi ◽  
Xuecheng Shao ◽  
Chuanxun Su ◽  
Yuanyuan Zhou ◽  
Shoutao Zhang ◽  
...  

2011 ◽  
Vol 115 (10) ◽  
pp. 4235-4239 ◽  
Author(s):  
Xiaojun Wu ◽  
Rulong Zhou ◽  
Jinlong Yang ◽  
Xiao Cheng Zeng

Author(s):  
Vladimir Tsirelson ◽  
Adam Stash

This work extends the orbital-free density functional theory to the field of quantum crystallography. The total electronic energy is decomposed into electrostatic, exchange, Weizsacker and Pauli components on the basis of physically grounded arguments. Then, the one-electron Euler equation is re-written through corresponding potentials, which have clear physical and chemical meaning. Partial electron densities related with these potentials by the Poisson equation are also defined. All these functions were analyzed from viewpoint of their physical content and limits of applicability. Then, they were expressed in terms of experimental electron density and its derivatives using the orbital-free density functional theory approximations, and applied to the study of chemical bonding in a heteromolecular crystal of ammonium hydrooxalate oxalic acid dihydrate. It is demonstrated that this approach allows the electron density to be decomposed into physically meaningful components associated with electrostatics, exchange, and spin-independent wave properties of electrons or with their combinations in a crystal. Therefore, the bonding information about a crystal that was previously unavailable for X-ray diffraction analysis can be now obtained.


Sign in / Sign up

Export Citation Format

Share Document