scholarly journals The Application of Imaging Flow Cytometry for Characterisation and Quantification of Bacterial Phenotypes

Author(s):  
Ann L. Power ◽  
Daniel G. Barber ◽  
Sophie R. M. Groenhof ◽  
Sariqa Wagley ◽  
Ping Liu ◽  
...  

Bacteria modify their morphology in response to various factors including growth stage, nutrient availability, predation, motility and long-term survival strategies. Morphological changes may also be associated with specific physiological phenotypes such as the formation of dormant or persister cells in a “viable but non-culturable” (VBNC) state which frequently display different shapes and size compared to their active counterparts. Such dormancy phenotypes can display various degrees of tolerance to antibiotics and therefore a detailed understanding of these phenotypes is crucial for combatting chronic infections and associated diseases. Cell shape and size are therefore more than simple phenotypic characteristics; they are important physiological properties for understanding bacterial life-strategies and pathologies. However, quantitative studies on the changes to cell morphologies during bacterial growth, persister cell formation and the VBNC state are few and severely constrained by current limitations in the most used investigative techniques of flow cytometry (FC) and light or electron microscopy. In this study, we applied high-throughput Imaging Flow Cytometry (IFC) to characterise and quantify, at single-cell level and over time, the phenotypic heterogeneity and morphological changes in cultured populations of four bacterial species, Bacillus subtilis, Lactiplantibacillus plantarum, Pediococcus acidilactici and Escherichia coli. Morphologies in relation to growth stage and stress responses, cell integrity and metabolic activity were analysed. Additionally, we were able to identify and morphologically classify dormant cell phenotypes such as VBNC cells and monitor the resuscitation of persister cells in Escherichia coli following antibiotic treatment. We therefore demonstrate that IFC, with its high-throughput data collection and image capture capabilities, provides a platform by which a detailed understanding of changes in bacterial phenotypes and their physiological implications may be accurately monitored and quantified, leading to a better understanding of the role of phenotypic heterogeneity in the dynamic microbiome.

Cell Reports ◽  
2021 ◽  
Vol 34 (10) ◽  
pp. 108824
Author(s):  
Gregor Holzner ◽  
Bogdan Mateescu ◽  
Daniel van Leeuwen ◽  
Gea Cereghetti ◽  
Reinhard Dechant ◽  
...  

2017 ◽  
Vol 80 (1) ◽  
Author(s):  
Asya Smirnov ◽  
Michael D. Solga ◽  
Joanne Lannigan ◽  
Alison K. Criss

Lab on a Chip ◽  
2016 ◽  
Vol 16 (10) ◽  
pp. 1743-1756 ◽  
Author(s):  
Andy K. S. Lau ◽  
Ho Cheung Shum ◽  
Kenneth K. Y. Wong ◽  
Kevin K. Tsia

Optical time-stretch imaging is now proven for ultrahigh-throughput optofluidic single-cell imaging, at least 10–100 times faster.


2017 ◽  
Vol 139 (2) ◽  
pp. AB163
Author(s):  
Justyna Piasecka ◽  
Holger Hennig ◽  
Fabian J. Theis ◽  
Paul Rees ◽  
Huw D. Summers ◽  
...  

Chem ◽  
2017 ◽  
Vol 3 (4) ◽  
pp. 588-602 ◽  
Author(s):  
Anandkumar S. Rane ◽  
Justina Rutkauskaite ◽  
Andrew deMello ◽  
Stavros Stavrakis

2020 ◽  
Author(s):  
Hideharu Mikami ◽  
Makoto Kawaguchi ◽  
Chun-Jung Huang ◽  
Hiroki Matsumura ◽  
Takeaki Sugimura ◽  
...  

ABSTRACTBy virtue of the combined merits of flow cytometry and fluorescence microscopy, imaging flow cytometry (IFC) has become an established tool for cell analysis in diverse biomedical fields such as cancer biology, microbiology, immunology, hematology, and stem cell biology. However, the performance and utility of IFC are severely limited by the fundamental trade-off between throughput, sensitivity, and spatial resolution. For example, at high flow speed (i.e., high throughput), the integration time of the image sensor becomes short, resulting in reduced sensitivity or pixel resolution. Here we present an optomechanical imaging method that overcomes the trade-off by virtually “freezing” the motion of flowing cells on the image sensor to effectively achieve 1,000 times longer exposure time for microscopy-grade fluorescence image acquisition. Consequently, it enables high-throughput IFC of single cells at >10,000 cells/s without sacrificing sensitivity and spatial resolution. The availability of numerous information-rich fluorescence cell images allows high-dimensional statistical analysis and accurate classification with deep learning, as evidenced by our demonstration of unique applications in hematology and microbiology.


Optica ◽  
2019 ◽  
Vol 6 (10) ◽  
pp. 1297 ◽  
Author(s):  
Yuanyuan Han ◽  
Rui Tang ◽  
Yi Gu ◽  
Alex Ce Zhang ◽  
Wei Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document