scholarly journals Treadmill Exercise Attenuates Cerebral Ischemia–Reperfusion Injury by Promoting Activation of M2 Microglia via Upregulation of Interleukin-4

2021 ◽  
Vol 8 ◽  
Author(s):  
Juanjuan Lu ◽  
Jie Wang ◽  
Long Yu ◽  
Rong Cui ◽  
Ying Zhang ◽  
...  

Background: Exercise has been proven to be an effective therapy for stroke by reducing the microglia-initiated proinflammatory response. Few studies, however, have focused on the phenotypic changes in microglia cells caused by exercise training. The present study was designed to evaluate the influence of treadmill exercise on microglia polarization and the molecular mechanisms involved.Methods: Male Sprague-Dawley rats were randomly assigned into 3 groups: sham, MCAO and exercise. The middle cerebral artery occlusion (MCAO) and exercise groups received MCAO surgery and the sham group a sham operation. The exercise group also underwent treadmill exercise after the surgery. These groups were studied after 4 and 7 days to evaluate behavioral performance using a modified neurological severity score (mNSS), and infarct conditions using 2,3,5-triphenyl tetrazolium chloride. Quantitative real-time polymerase chain reaction (qRT-PCR) and Luminex was employed to determine the expressions of markers of microglia phenotypes. Western blotting was employed to identify the phosphorylation levels of Janus kinase1 (JAK1) and signal transducer and activator of transcription 6 (STAT6). Immunofluorescence was conducted to identify microglia phenotypes.Results: Treadmill exercise was found to improve neurobehavioral outcomes, mainly motor and balance functions, reduce infarct volumes and significantly increase interleukin-4 (IL-4) expression. In addition, treadmill exercise inhibited M1 microglia and promoted M2 microglia activation as evidenced by decreased M1 and increased M2 markers. Furthermore, an obvious increase in p-JAK1 and p-STAT6 was observed in the exercise group.Conclusions: Treadmill exercise ameliorates cerebral ischemia–reperfusion injury by enhancing IL-4 expression to promote M2 microglia polarization, possibly via the JAK1-STAT6 pathway.

2019 ◽  
Vol 22 (04) ◽  
pp. 122-130
Author(s):  
Rihab H Al-Mudhaffer ◽  
Laith M Abbas Al-Huseini ◽  
Saif M Hassan ◽  
Najah R Hadi

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kazuya Matsuo ◽  
Kohkichi Hosoda ◽  
Jun Tanaka ◽  
Yusuke Yamamoto ◽  
Taichiro Imahori ◽  
...  

Abstract Background We previously reported that heat shock protein 27 (HSP27) phosphorylation plays an important role in the activation of glucose-6-phosphate dehydrogenase (G6PD), resulting in the upregulation of the pentose phosphate pathway and antioxidant effects against cerebral ischemia–reperfusion injury. The present study investigated the effect of geranylgeranylacetone, an inducer of HSP27, on ischemia–reperfusion injury in male rats as a preliminary study to see if further research of the effects of geranylgeranylacetone on the ischemic stroke was warranted. Methods In all experiments, male Wistar rats were used. First, we conducted pathway activity profiling based on a gas chromatography–mass spectrometry to identify ischemia–reperfusion-related metabolic pathways. Next, we investigated the effects of geranylgeranylacetone on the pentose phosphate pathway and ischemia–reperfusion injury by real-time polymerase chain reaction (RT-PCR), immunoblotting, and G6PD activity, protein carbonylation and infarct volume analysis. Geranylgeranylacetone or vehicle was injected intracerebroventricularly 3 h prior to middle cerebral artery occlusion or sham operation. Results Pathway activity profiling demonstrated that changes in the metabolic state depended on reperfusion time and that the pentose phosphate pathway and taurine-hypotaurine metabolism pathway were the most strongly related to reperfusion among 137 metabolic pathways. RT-PCR demonstrated that geranylgeranylacetone did not significantly affect the increase in HSP27 transcript levels after ischemia–reperfusion. Immunoblotting showed that geranylgeranylacetone did not significantly affect the elevation of HSP27 protein levels. However, geranylgeranylacetone significantly increase the elevation of phosphorylation of HSP27 after ischemia–reperfusion. In addition, geranylgeranylacetone significantly affected the increase in G6PD activity, and reduced the increase in protein carbonylation after ischemia–reperfusion. Accordingly, geranylgeranylacetone significantly reduced the infarct size (median 31.3% vs 19.9%, p = 0.0013). Conclusions As a preliminary study, these findings suggest that geranylgeranylacetone may be a promising agent for the treatment of ischemic stroke and would be worthy of further study. Further studies are required to clearly delineate the mechanism of geranylgeranylacetone-induced HSP27 phosphorylation in antioxidant effects, which may guide the development of new approaches for minimizing the impact of cerebral ischemia–reperfusion injury.


Sign in / Sign up

Export Citation Format

Share Document