scholarly journals Tephra From the 3 March 2015 Sustained Column Related to Explosive Lava Fountain Activity at Volcán Villarrica (Chile)

2018 ◽  
Vol 6 ◽  
Author(s):  
Jorge E. Romero ◽  
Franco Vera ◽  
Margherita Polacci ◽  
Daniele Morgavi ◽  
Fabio Arzilli ◽  
...  
Keyword(s):  
2021 ◽  
Vol 13 (15) ◽  
pp. 3052
Author(s):  
Sonia Calvari ◽  
Alessandro Bonaccorso ◽  
Gaetana Ganci

On 13 December 2020, Etna volcano entered a new eruptive phase, giving rise to a number of paroxysmal episodes involving increased Strombolian activity from the summit craters, lava fountains feeding several-km high eruptive columns and ash plumes, as well as lava flows. As of 2 August 2021, 57 such episodes have occurred in 2021, all of them from the New Southeast Crater (NSEC). Each paroxysmal episode lasted a few hours and was sometimes preceded (but more often followed) by lava flow output from the crater rim lasting a few hours. In this paper, we use remote sensing data from the ground and satellite, integrated with ground deformation data recorded by a high precision borehole strainmeter to characterize the 12 March 2021 eruptive episode, which was one of the most powerful (and best recorded) among that occurred since 13 December 2020. We describe the formation and growth of the lava fountains, and the way they feed the eruptive column and the ash plume, using data gathered from the INGV visible and thermal camera monitoring network, compared with satellite images. We show the growth of the lava flow field associated with the explosive phase obtained from a fixed thermal monitoring camera. We estimate the erupted volume of pyroclasts from the heights of the lava fountains measured by the cameras, and the erupted lava flow volume from the satellite-derived radiant heat flux. We compare all erupted volumes (pyroclasts plus lava flows) with the total erupted volume inferred from the volcano deflation recorded by the borehole strainmeter, obtaining a total erupted volume of ~3 × 106 m3 of magma constrained by the strainmeter. This volume comprises ~1.6 × 106 m3 of pyroclasts erupted during the lava fountain and 2.4 × 106 m3 of lava flow, with ~30% of the erupted pyroclasts being remobilized as rootless lava to feed the lava flows. The episode lasted 130 min and resulted in an eruption rate of ~385 m3 s−1 and caused the formation of an ash plume rising from the margins of the lava fountain that rose up to 12.6 km a.s.l. in ~1 h. The maximum elevation of the ash plume was well constrained by an empirical formula that can be used for prompt hazard assessment.


2013 ◽  
Vol 40 (14) ◽  
pp. 3579-3584 ◽  
Author(s):  
A. Bonaccorso ◽  
G. Currenti ◽  
A. Linde ◽  
S. Sacks
Keyword(s):  

2018 ◽  
Vol 6 ◽  
Author(s):  
Daniele Andronico ◽  
Boris Behncke ◽  
Emanuela De Beni ◽  
Antonino Cristaldi ◽  
Simona Scollo ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Luigi Passarelli ◽  
Mehdi Nikkhoo ◽  
Eleonora Rivalta ◽  
Corine Frischknecht ◽  
Costanza Bonadonna ◽  
...  

<div> <p><span>Lava fountains represent a common eruptive phenomenon at basaltic volcanoes, which consist of jets of fluid lava ejected into the atmosphere from active vents or fissures. They are driven by rapid formation and expansion of gas bubbles during magma ascent. The dynamics of lava fountains is thought to be controlled by the gas accumulation in the foam layer at the top of a shallow magmatic reservoir, which eventually collapses triggering the lava fountaining. Gravity measurements taken from a location close to summit of Mt. Etna during the 2011 lava fountain episodes showed a pre-fountaining decrease of the gravity signal. The interplay between gas accumulation in the foam layer and its subsequent exsolution in the conduit has been interpreted as the mechanism producing the gravity decrease and eventually leading to the foam collapse and onset of the lava fountaining activity. Gravity measurements have proved helpful in recording the earliest phases anticipating the lava fountain episodes and inferring the amount of gas involved. However, more accurate estimates of the accumulating and ascending gas volume and total magma mass require considering the possible effect of non-spherical magma chamber geometries and magma compressibility. </span></p> </div><div> <p><span>Under task 4.4 of the H2020 NEWTON-g project, we are accomplishing a detailed study aimed to simulate the gravity signal produced in the stage prior to a lava fountain episode, through a magma chamber - conduit model. We use a prolate ellipsoidal chamber matching the inferred shape of the shallow chamber active at Mt. Etna during the lava fountain episodes, and calculate the surface gravity changes induced by inflow of new magma into the chamber-conduit system. We use a two-phase magma with fixed amount of gas mass fraction and account for magma compressibility. We find that a realistic chamber shape and magma compressibility play a key role and must be considered to produce realistic gravity changes simulations. We combine our physical model with empirical distributions of recurrence time and eruption size of the past lava fountains at Mt. Etna to stochastically simulate realistic time series of gravity changes. The final goal of this study is to develop a prediction model for the amount of magma and duration of lava fountains at Mt. Etna.</span></p> </div>


2011 ◽  
Vol 12 (7) ◽  
pp. n/a-n/a ◽  
Author(s):  
A. Bonaccorso ◽  
A. Cannata ◽  
R. A. Corsaro ◽  
G. Di Grazia ◽  
S. Gambino ◽  
...  
Keyword(s):  

2012 ◽  
Vol 13 (11) ◽  
Author(s):  
A. Bonaccorso ◽  
A. Cannata ◽  
R. A. Corsaro ◽  
G. Di Grazia ◽  
S. Gambino ◽  
...  
Keyword(s):  

2019 ◽  
Vol 11 (10) ◽  
pp. 1201 ◽  
Author(s):  
Dario Delle Donne ◽  
Alessandro Aiuppa ◽  
Marcello Bitetto ◽  
Roberto D’Aleo ◽  
Mauro Coltelli ◽  
...  

We used a one-year long SO2 flux record, which was obtained using a novel algorithm for real-time automatic processing of ultraviolet (UV) camera data, to characterize changes in degassing dynamics at the Mt. Etna volcano in 2016. These SO2 flux records, when combined with independent thermal and seismic evidence, allowed for capturing switches in activity from paroxysmal explosive eruptions to quiescent degassing. We found SO2 fluxes 1.5–2 times higher than the 2016 average (1588 tons/day) during the Etna’s May 16–25 eruptive paroxysmal activity, and mild but detectable SO2 flux increases more than one month before its onset. The SO2 flux typically peaked during a lava fountain. Here, the average SO2 degassing rate was ~158 kg/s, the peak emission was ~260 kg/s, and the total released SO2 mass was ~1700 tons (in 3 h on 18 May, 2016). Comparison between our data and prior (2014–2015) results revealed systematic SO2 emission patterns prior to, during, and after an Etna’s paroxysmal phases, which allows us to tentatively identify thresholds between pre-eruptive, syn-eruptive, and post-eruptive degassing regimes.


Sign in / Sign up

Export Citation Format

Share Document