lava fountains
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 11)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Alessandro Bonaccorso ◽  
Luigi Carleo ◽  
Gilda Currenti ◽  
Antonino Sicali

A main challenge in open conduit volcanoes is to detect and interpret the ultra-small strain (<10–6) associated with minor but critical eruptions such as the lava fountains. Two years after the flank eruption of December 2018, Etna generated a violent and spectacular eruptive sequence of lava fountains. There were 23 episodes from December 13, 2020 to March 31, 2021, 17 of which in the brief period 16 February to 31 March with an intensified occurrence rate. The high-precision borehole dilatometer network recorded significant strain changes in the forerunning phase of December 2020 accompanying the final magma migration at the shallower levels, and also during the single lava fountains and during the entire sequence. The source modeling provided further information on the shallow plumbing system. Moreover, the strain signals also gave useful information both on the explosive efficiency of the lava fountains sequence and the estimate of erupted volume. The high precision borehole dilatometers confirm to be strategic and very useful tool, also to detect and interpret ultra-small strain changes associated with explosive eruptions, such as lava fountains, in open conduit volcanoes.


Geology ◽  
2021 ◽  
Author(s):  
Alan G. Whittington ◽  
Alexander Sehlke

We show that recalescence, or spontaneous reheating of a cooling material due to rapid release of latent heat, can occur during disequilibrium crystallization of depolymerized Mg-rich melts. This can only happen at fast cooling rates, where the melt becomes undercooled by tens to hundreds of degrees before crystallization begins. Using a forward-looking infrared (FLIR) camera, we documented recalescence in pyroxene (Fe, Mg)SiO3 and komatiite lavas that initially cooled at 25–50 °C s–1. Local heating at the crystallization front exceeds 150 °C for the pyroxene and 10 °C for komatiite and lasts for several seconds as the crystallization front migrates through. We determined the latent heat release by differential scanning calorimetry to be 440 J g–1 for pyroxene and 275 J g–1 for komatiite with a brief power output of ~100 W g–1 or ~300 MW m–3. Recalescence may be a widespread process in the solar system, particularly in lava fountains, and cooling histories of mafic pyroclasts should not be assumed a priori to be monotonic.


2021 ◽  
Vol 13 (15) ◽  
pp. 3052
Author(s):  
Sonia Calvari ◽  
Alessandro Bonaccorso ◽  
Gaetana Ganci

On 13 December 2020, Etna volcano entered a new eruptive phase, giving rise to a number of paroxysmal episodes involving increased Strombolian activity from the summit craters, lava fountains feeding several-km high eruptive columns and ash plumes, as well as lava flows. As of 2 August 2021, 57 such episodes have occurred in 2021, all of them from the New Southeast Crater (NSEC). Each paroxysmal episode lasted a few hours and was sometimes preceded (but more often followed) by lava flow output from the crater rim lasting a few hours. In this paper, we use remote sensing data from the ground and satellite, integrated with ground deformation data recorded by a high precision borehole strainmeter to characterize the 12 March 2021 eruptive episode, which was one of the most powerful (and best recorded) among that occurred since 13 December 2020. We describe the formation and growth of the lava fountains, and the way they feed the eruptive column and the ash plume, using data gathered from the INGV visible and thermal camera monitoring network, compared with satellite images. We show the growth of the lava flow field associated with the explosive phase obtained from a fixed thermal monitoring camera. We estimate the erupted volume of pyroclasts from the heights of the lava fountains measured by the cameras, and the erupted lava flow volume from the satellite-derived radiant heat flux. We compare all erupted volumes (pyroclasts plus lava flows) with the total erupted volume inferred from the volcano deflation recorded by the borehole strainmeter, obtaining a total erupted volume of ~3 × 106 m3 of magma constrained by the strainmeter. This volume comprises ~1.6 × 106 m3 of pyroclasts erupted during the lava fountain and 2.4 × 106 m3 of lava flow, with ~30% of the erupted pyroclasts being remobilized as rootless lava to feed the lava flows. The episode lasted 130 min and resulted in an eruption rate of ~385 m3 s−1 and caused the formation of an ash plume rising from the margins of the lava fountain that rose up to 12.6 km a.s.l. in ~1 h. The maximum elevation of the ash plume was well constrained by an empirical formula that can be used for prompt hazard assessment.


2021 ◽  
Author(s):  
Luigi Passarelli ◽  
Mehdi Nikkhoo ◽  
Eleonora Rivalta ◽  
Corine Frischknecht ◽  
Costanza Bonadonna ◽  
...  

<div> <p><span>Lava fountains represent a common eruptive phenomenon at basaltic volcanoes, which consist of jets of fluid lava ejected into the atmosphere from active vents or fissures. They are driven by rapid formation and expansion of gas bubbles during magma ascent. The dynamics of lava fountains is thought to be controlled by the gas accumulation in the foam layer at the top of a shallow magmatic reservoir, which eventually collapses triggering the lava fountaining. Gravity measurements taken from a location close to summit of Mt. Etna during the 2011 lava fountain episodes showed a pre-fountaining decrease of the gravity signal. The interplay between gas accumulation in the foam layer and its subsequent exsolution in the conduit has been interpreted as the mechanism producing the gravity decrease and eventually leading to the foam collapse and onset of the lava fountaining activity. Gravity measurements have proved helpful in recording the earliest phases anticipating the lava fountain episodes and inferring the amount of gas involved. However, more accurate estimates of the accumulating and ascending gas volume and total magma mass require considering the possible effect of non-spherical magma chamber geometries and magma compressibility. </span></p> </div><div> <p><span>Under task 4.4 of the H2020 NEWTON-g project, we are accomplishing a detailed study aimed to simulate the gravity signal produced in the stage prior to a lava fountain episode, through a magma chamber - conduit model. We use a prolate ellipsoidal chamber matching the inferred shape of the shallow chamber active at Mt. Etna during the lava fountain episodes, and calculate the surface gravity changes induced by inflow of new magma into the chamber-conduit system. We use a two-phase magma with fixed amount of gas mass fraction and account for magma compressibility. We find that a realistic chamber shape and magma compressibility play a key role and must be considered to produce realistic gravity changes simulations. We combine our physical model with empirical distributions of recurrence time and eruption size of the past lava fountains at Mt. Etna to stochastically simulate realistic time series of gravity changes. The final goal of this study is to develop a prediction model for the amount of magma and duration of lava fountains at Mt. Etna.</span></p> </div>


2021 ◽  
Author(s):  
Giuseppe La Spina ◽  
Fabio Arzilli ◽  
Ed Llewellin ◽  
Mike Burton ◽  
Amanda Clarke ◽  
...  

<p>Basaltic volcanoes exhibit a wide range of eruptive styles, from relatively gentle effusive eruptions (producing lava flows and lava domes) to highly explosive activity (where pyroclastic materials are ejected from the vent as a jet or plume). The difference between explosive and effusive eruptions is dictated by the ability of magma to fragment during ascent. For lava fountains the distinction is unclear, as the liquid phase in the rising magma may remain continuous to the vent, fragment in the fountain, then re-weld on deposition to feed rheomorphic lava flows.</p><p>Here we use a magma ascent model to constrain the controls on basaltic eruption style, using Kilauea and Etna as case studies. Following our results, we suggest that lava fountaining is a distinct style, separate from effusive and explosive eruption styles, that is produced when magma ascends quickly and fragments above the vent, rather than within the conduit. Performing sensitivity analyses of Kilauea and Etna case studies we found that high lava fountains (> 50 m high) occur when the Reynolds number of the bubbly magma is greater than ~0.1, the bulk viscosity is less than 10<sup>6</sup> Pa s, and the gas is well-coupled to the melt. According to our results, explosive eruptions (Plinian and sub-Plinian) are expected over a wide region of parameter space for higher viscosity basalts, typical of Etna, but over a much narrower region of parameter space for lower viscosity basalts, typical of Kilauea. Numerical simulations indicate also that the magma that feeds high lava fountains ascends more quickly than the magma that feeds explosive eruptions, thanks to its lower viscosity. For the Kilauea case study, a decreasing ascent velocity is expected to produce a progressive evolution from high to weak fountaining, to ultimate effusion. For the Etna case study, instead, small changes in parameter values lead to transitions to and from explosive activity, indicating that eruption transitions may occur with little warning.</p>


2021 ◽  
Vol 553 ◽  
pp. 116658
Author(s):  
G. La Spina ◽  
F. Arzilli ◽  
E.W. Llewellin ◽  
M.R. Burton ◽  
A.B. Clarke ◽  
...  

2020 ◽  
Author(s):  
Sandro Matos ◽  
Nicolau Wallenstein ◽  
Emanuele Marchetti ◽  
Maurizio Ripepe

<p>Stromboli is one of the most active volcanoes on Earth with a continuous explosive activity and persistent degassing since at least 3-7 AD (Rossi et al., 2000). Being an open conduit volcano, its spectacular basaltic explosions interspersed by lava fountains occurring every ≈10 minutes (Ripepe et al., 2002) make it probably the world's best-know and best-monitored volcano.</p><p>On 3<sup>rd </sup>July 2019 at the 14:45:43 UTC a paroxysmal explosion occurred with an ash column that rose almost 5 km above the volcano. This very strong explosive event was detected in several IMS infrasound stations, including IS42, located in the Azores islands in the middle of the North-Atlantic, at a distance of about 3,700 km.</p><p>We present the long-range infrasound detections that allowed us to locate the source based only in infrasound with an estimated error of less than 55 km from the ground truth event.</p><p><strong>Keywords:</strong> Stromboli volcano, paroxysm, infrasound, IMS, IS42</p>


2020 ◽  
Author(s):  
Sonia Calvari ◽  
Giuseppe Bilotta ◽  
Alessandro Bonaccorso ◽  
Tommaso Caltabiano ◽  
Annalisa Cappello ◽  
...  

<p>The Etna flank eruption started on 24 December 2018 lasted a few days and involved the opening of an eruptive fissure, accompanied by a seismic swarm and shallow earthquakes, and by large and widespread ground deformation especially on the eastern flank of the volcano. Lava fountains and ash plume from the uppermost eruptive fissure have accompanied the opening stage causing disruption of Catania international airport, and have been followed by a quiet lava effusion within the barren Valle del Bove depression until 27 December. This is the first flank eruption occurring at Etna in the last decade, during which eruptive activity was confined to the summit craters and resulted in lava fountains and lava flow output from the crater rims. In this paper we use ground and satellite remote sensing techniques to describe the sequence of events, quantify the erupted volumes of lava, gas and tephra, and assess volcanic hazard.</p>


2020 ◽  
Vol 12 (6) ◽  
pp. 905 ◽  
Author(s):  
Sonia Calvari ◽  
Giuseppe Bilotta ◽  
Alessandro Bonaccorso ◽  
Tommaso Caltabiano ◽  
Annalisa Cappello ◽  
...  

The Etna flank eruption that started on 24 December 2018 lasted a few days and involved the opening of an eruptive fissure, accompanied by a seismic swarm and shallow earthquakes, significant SO2 flux release, and by large and widespread ground deformation, especially on the eastern flank of the volcano. Lava fountains and ash plumes from the uppermost eruptive fissure accompanied the opening stage, causing disruption to Catania International Airport, and were followed by a quiet lava effusion within the barren Valle del Bove depression until 27 December. This was the first flank eruption to occur at Etna in the last decade, during which eruptive activity was confined to the summit craters and resulted in lava fountains and lava flow output from the crater rims. In this paper, we used ground and satellite remote sensing techniques to describe the sequence of events, quantify the erupted volumes of lava, gas, and tephra, and assess volcanic hazards.


Sign in / Sign up

Export Citation Format

Share Document