explosive eruptions
Recently Published Documents


TOTAL DOCUMENTS

306
(FIVE YEARS 86)

H-INDEX

44
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Penny Wieser ◽  
Marie Edmonds ◽  
Cheryl Gansecki ◽  
John Maclennan ◽  
Frances Jenner ◽  
...  

Magmas with matrix glass compositions ranging from basalt to dacite erupted from a series of 24 fissures in the first two weeks of the 2018 Lower East Rift Zone (LERZ) eruption of Kīlauea Volcano. Eruption styles ranged from low spattering and fountaining to strombolian activity. Major element trajectories in matrix glasses and melt inclusions hosted by olivine, pyroxene and plagioclase are consistent with variable amounts of fractional crystallization, with incompatible elements (e.g., Cl, F, H2O) becoming enriched by 4-5 times as melt MgO contents evolve from 6 to 0.5 wt%. The high viscosity and high H2O contents (~2 wt%) of the dacitic melts erupting at Fissure 17 account for the explosive Strombolian behavior exhibited by this fissure, in contrast to the low fountaining and spattering observed at fissures erupting basaltic to basaltic-andesite melts. Saturation pressures calculated from melt inclusions CO2-H2O contents indicate that the magma reservoir(s) supplying these fissures was located at ~2-3 km depth, which is in agreement with the depth of a dacitic magma body intercepted during drilling in 2005 (~2.5 km) and a seismically-imaged low Vp/Vs anomaly (~2 km depth). Nb/Y ratios in erupted products are similar to lavas erupted between 1955-1960, indicating that melts were stored and underwent variable amounts of crystallization in the LERZ for >60 years before being remobilized by a dike intrusion in 2018. We demonstrate that extensive fractional crystallization generates viscous and volatile-rich magma with potential for hazardous explosive eruptions, which may be lurking undetected at many ocean island volcanoes.


2022 ◽  
pp. SP520-2021-135
Author(s):  
J. L. Smellie

AbstractThree discrete categories of sedimentary deposits are associated with glaciovolcanism: englacial cavity, jökulhlaup and lahar. Englacial cavity deposits are found in water-filled chambers in the lee of active glaciovolcanoes or at a locus of enhanced geothermal heat flux. The cavities provide a depocentre for the accumulation of debris, either abundant fresh juvenile debris with sparse dropstones (associated with active glaciovolcanism) or polymict basal glacial debris in which dropstones are abundant (associated with geothermal hot spots). Described examples are uncommon. By contrast, volcanogenic jökulhlaup deposits are abundant, mainly in Iceland, where they form extensive sandar sequences associated with ice-covered volcanoes. Jökulhlaups form as a result of the sudden subglacial discharge of stored meltwater. Analogous deposits known as glaciovolcanic sheet-like sequences represent the ultra-proximal lateral equivalents deposited under the ice. Glaciovolcanic lahars are associated with ice-capped volcanoes. They form as a result of explosive eruptions through relatively thin ice or following dome collapse, and they trigger mainly supraglacial rather than subglacial meltwater escape. Sediment transport and depositional processes are similar in jökulhaups and lahars and are dominated by debris flow and hyperconcentrated or supercritical flow modes during the main flood stage, although the proportions of the principal lithofacies are different.


Geology ◽  
2022 ◽  
Author(s):  
Martin F. Mangler ◽  
Chiara Maria Petrone ◽  
Julie Prytulak

Diffusion chronometry has produced petrological evidence that magma recharge in mafic to intermediate systems can trigger volcanic eruptions within weeks to months. However, less is known about longer-term recharge frequencies and durations priming magma reservoirs for eruptions. We use Fe-Mg diffusion modeling in orthopyroxene to show that the duration, frequency, and timing of pre-eruptive recharge at Popocatépetl volcano (Mexico) vary systematically with eruption style and magnitude. Effusive eruptions are preceded by 9–13 yr of increased recharge activity, compared to 15–100 yr for explosive eruptions. Explosive eruptions also record a higher number of individual recharge episodes priming the plumbing system. The largest explosive eruptions are further distinguished by an ~1 yr recharge hiatus directly prior to eruption. Our results offer valuable context for the interpretation of ongoing activity at Popocatépetl, and seeking similar correlations at other arc volcanoes may advance eruption forecasting by including constraints on potential eruption size and style.


2022 ◽  
Vol 61 (1) ◽  
pp. 5-19
Author(s):  
Izumi Yokoyama

Volcanic calderas, plentiful on the Earth and the moon, have been of much interest to volcanologists because of their large dimensions and extensive volumes of ejecta. Here, we consider the dynamics of caldera-forming by major explosive eruptions, examining how the breakdown of the earth's surface is caused by violent igneous activity. This leads to the definition of “typical explosion caldera”, which is a prototype of several newly-formed calderas in the historical timescale. There are three examples of such calderas: Tambora (Sumbawa), Krakatau (Sunda Straits), and Novarupta (Alaska). Tam- bora Caldera is the best example of a well-documented, recently formed typical explosion caldera, with no significant subsequent eruptions occurring after its formation. The subsurface structure of Tambora Caldera is discussed and compared to the 1883 eruption of Krakatau, the second largest eruption in historical times. Then, contrasting with the typically basaltic “collapse-type” calderas, a “Tambora-caldera type” is defined as a large “explosion-type” caldera, that may reach up to 10 km in diameter. The Tambora- type caldera concept is useful to qualify and understand the structure and components of other major calderas in the world. Fully developed larger explosion calderas such as Aso and Aira Calderas in Kyushu, Japan are discussed and explained as composite calderas based on geophysical data. Those calderas have repeatedly ejected massive pyroclastic products causing their original structures to grow wider than 10 km.  


2021 ◽  
Vol 84 (1) ◽  
Author(s):  
R. S. J. Sparks ◽  
J. D. Blundy ◽  
K. V. Cashman ◽  
M. Jackson ◽  
A. Rust ◽  
...  

AbstractOver the last 20 years, new concepts have emerged into understanding the processes that lead to build up to large silicic explosive eruptions based on integration of geophysical, geochemical, petrological, geochronological and dynamical modelling. Silicic melts are generated within magma systems extending throughout the crust by segregation from mushy zones. Segregated melt layers become unstable and can assemble into ephemeral upper crustal magma chambers rapidly prior to eruption. In the next 10 years, we can expect major advances in dynamical models as well as in analytical and geophysical methods, which need to be underpinned in field research.


2021 ◽  
Vol 64 (5) ◽  
pp. VO542
Author(s):  
Stefano Branca ◽  
Francesco Privitera ◽  
Orazio Palio ◽  
Maria Turco

   This study analyses the relationship between the pre- and protohistoric sites on the slopes of Etna and the volcanic products, as well as the diverse settlement strategies in the different periods of prehistory. New C14 dating from significant excavations, in addition to those known from other Etnean sites, were performed with the aim of validating the chronology of the sequence of the different phases. A substantial concordance of the archaeological data with the volcanological ones has been found. It has been observed that a consistent human presence on Etna appears from the Middle Neolithic (5500 BC), after the sequence of eruptive events that marked the end of the Ellittico volcano (13550 - 13050 BC) and the formation of the Valle del Bove, and the subsequent debris and alluvial events on the eastern flanks of the volcano (7250 - 3350 BC). Human presence intensifies between the Late-Final Copper Age and the Early Bronze Age (2800 - 1450 BC), due to improvement in subsistence techniques and to the large presence of soils on lava flows suitable for sheep farming. The most recent phases of the Bronze Age are poorly represented, probably because of the concentration of the population in larger agglomerations (Montevergine and S. Paolillo at Catania, the Historical Hill at Paternò). The explosive eruptions taking place in this period seem to have had less impact on the settlement choices and have not affected the development of the sites over time. 


2021 ◽  
Vol 64 (5) ◽  
pp. V0546
Author(s):  
Mauro Antonio Di Vito ◽  
Paola Aurino ◽  
Giuliana Boenzi ◽  
Elena Laforgia ◽  
Ilaria Rucco

   Archaeological and volcanological studies have revealed that eruptions of Neapolitan volcanoes have conditioned human settlement patterns since prehistoric times. The occurrence of high intensity explosive eruptions, interspersed with long periods of quiescence, has characterized the last 10 ka of activity of these volcanoes. Geoarchaeological studies, carried out in advance of investigations for the construction of the Rome-Naples and the new Naples-Bari railway lines, have made possible a detailed reconstruction of human presence in the central part of the Campania Plain up to the coastal strip, between the late Neolithic and the late Bronze Age. The examined chronological interval includes sequences of pyroclastic deposits erupted by both Campi Flegrei and Somma-Vesuvius, and paleosols with evidence of anthropic frequentation.  Altogether, the geoarchaeological data have provided a detailed picture of human settlement and activities through time with a particular focus on a long period of quiescence of the two volcanoes and also during their intense activity. 


2021 ◽  
Vol 84 (1) ◽  
Author(s):  
Pedro Valdivia ◽  
Aaron A. Marshall ◽  
Brittany D. Brand ◽  
Michael Manga ◽  
Christian Huber

AbstractMafic volcanic activity is dominated by effusive to mildly explosive eruptions. Plinian and ignimbrite-forming mafic eruptions, while rare, are also possible; however, the conditions that promote such explosivity are still being explored. Eruption style is determined by the ability of gas to escape as magma ascends, which tends to be easier in low-viscosity, mafic magmas. If magma permeability is sufficiently high to reduce bubble overpressure during ascent, volatiles may escape from the magma, inhibiting violent explosive activity. In contrast, if the permeability is sufficiently low to retain the gas phase within the magma during ascent, bubble overpressure may drive magma fragmentation. Rapid ascent may induce disequilibrium crystallization, increasing viscosity and affecting the bubble network with consequences for permeability, and hence, explosivity. To explore the conditions that promote strongly explosive mafic volcanism, we combine microlite textural analyses with synchrotron x-ray computed microtomography of 10 pyroclasts from the 12.6 ka mafic Curacautín Ignimbrite (Llaima Volcano, Chile). We quantify microlite crystal size distributions (CSD), microlite number densities, porosity, bubble interconnectivity, bubble number density, and geometrical properties of the porous media to investigate the role of magma degassing processes at mafic explosive eruptions. We use an analytical technique to estimate permeability and tortuosity by combing the Kozeny-Carman relationship, tortuosity factor, and pyroclast vesicle textures. The groundmass of our samples is composed of up to 44% plagioclase microlites, > 85% of which are < 10 µm in length. In addition, we identify two populations of vesicles in our samples: (1) a convoluted interconnected vesicle network produced by extensive coalescence of smaller vesicles (> 99% of pore volume), and (2) a population of very small and completely isolated vesicles (< 1% of porosity). Computed permeability ranges from 3.0 × 10−13 to 6.3 × 10−12 m2, which are lower than the similarly explosive mafic eruptions of Tarawera (1886; New Zealand) and Etna (112 BC; Italy). The combination of our CSDs, microlite number densities, and 3D vesicle textures evidence rapid ascent that induced high disequilibrium conditions, promoting rapid syn-eruptive crystallization of microlites within the shallow conduit. We interpret that microlite crystallization increased viscosity while simultaneously forcing bubbles to deform as they grew together, resulting in the permeable by highly tortuous network of vesicles. Using the bubble number densities for the isolated vesicles (0.1-3−3 × 104 bubbles per mm3), we obtain a minimum average decompression rate of 1.4 MPa/s. Despite the textural evidence that the Curacautín magma reached the percolation threshold, we propose that rapid ascent suppressed outgassing and increased bubble overpressures, leading to explosive fragmentation. Further, using the porosity and permeability of our samples, we estimated that a bubble overpressure > 5 MPa could have been sufficient to fragment the Curacautín magma. Other mafic explosive eruptions report similar disequilibrium conditions induced by rapid ascent rate, implying that syn-eruptive disequilibrium conditions may control the explosivity of mafic eruptions more generally.


2021 ◽  
Vol 946 (1) ◽  
pp. 012015
Author(s):  
E I Malkin ◽  
N V Cherneva ◽  
P P Firstov ◽  
G I Druzhin ◽  
D V Sannikov

Abstract During volcano eruptions, so called dirty thunderstorms are the sources of electromagnetic radiation. They are caused by ash-gas clouds formed during explosive eruptions. Thunderstorm activity in an ash-gas cloud during volcano eruption is monitored by radio equipment. The VLF direction finder, located at Paratunka, monitors thunderstorm activity in the region of Kamchatka Peninsula including dirty thunderstorms accompanying explosive eruptions of Shiveluch and Bezymyanniy volcanoes. In the paper, we analyze records of electromagnetic radiation associated with dirty thunderstorms occurring during volcano eruptions from 2017 to 2020. During that period 24 eruptions of Shiveluch volcano and 5 eruptions of Bezymyanniy volcano occurred. Seventeen and three of them, respectively, caused dirty thunderstorms. Two-stage scenario of development is typical for all the dirty thunderstorms. The first stage lasts for 5–7 minutes and accompanies eruptive column development. However, if the eruption begins according to a smooth scenario, the first stage may be weak. The second stage lasts for 20–80 minutes and is associated with eruptive cloud formation and propagation. The intensity of this dirty thunderstorm stage depends on eruption power as well as on the interaction of an eruptive cloud during its propagation with the clouds of meteorological origin. Based on the obtained data, that is indicated by the increase of cloud-to-cloud stroke number.


Author(s):  
Michael R. Hudak ◽  
Ilya N. Bindeman ◽  
Matthew W. Loewen ◽  
Thomas Giachetti

Sign in / Sign up

Export Citation Format

Share Document