scholarly journals Study on the Long-Term Performance and Efficiency of Single-Well Circulation Coupled Groundwater Heat Pump System Based on Field Test

2021 ◽  
Vol 9 ◽  
Author(s):  
Ke Zhu ◽  
Yifan Zeng ◽  
Qiang Wu ◽  
Shengheng Xu ◽  
Kun Tu ◽  
...  

Although buildings are often heated and cooled by single-well circulation coupled groundwater heat pump systems, few studies have evaluated the long-term performance of these systems. Therefore, the present study investigated the performance of these systems by analyzing the efficiency and energy consumption using 4 years of operating data. The results indicate that the coefficient of performance (COP) of the system gradually decreases because of thermal breakthrough or an accumulation of cold. In addition, the sealing clapboards could effectively slow down thermal breakthrough. In addition, compared with the heating period, the COP of the heat pump unit (HPU) and system increases, and its energy consumption decreases in the cooling period. It was also found that partial heat loss occurs when water from the single-well circulation outlet penetrates the main pipeline. Moreover, the heat-exchange efficiency of a single HPU exceeds that of multiple HPUs, and the COP of a HPU decreases during operation with increasing indoor temperature. Accordingly, we improved the performance of system by increasing the underground heat storage. Herein, we focus on optimizing the system design during long-term operation, which includes taking steps such as lengthening the sealing clapboards, using insulated pipes, discharging the remaining water and adding intelligent control devices.

2019 ◽  
Vol 11 (12) ◽  
pp. 3282 ◽  
Author(s):  
Wenting Ma ◽  
Moon Keun Kim ◽  
Jianli Hao

This paper studies the long-term performance of a Ground Source Heat Pump (GSHP) system and a Water Source Heat Pump (WSHP) system for an office building in Suzhou, which is a hot summer and cold winter climate region of China. The hot summer and cold winter region is the most urbanized region of China and has subtropical monsoon climate, therefore, Heating, Ventilation, and Air Conditioning (HVAC) systems are in great demand. Due to the fact that 42.5% of Suzhou’s total area is covered by lakes and rivers, the city has an abundance of surface water resources. Based on Suzhou’s meteorological data and the thermal characteristics of the building envelope, an office building model was created and the dynamic cooling and heating load was calculated using Transient System Simulation (TRNSYS) simulation software. Two numerical HVAC modeling systems were created: a GSHP system for which the data of an in-situ Thermal Response Test (TRT) was used and a WSHP system for which the Tai Lake water temperature was used. Simulating the performance of both systems over a 20-year period, the two systems were analyzed for their Coefficient of Performance (COP), heat source temperature variation, and energy consumption. The results show that the GSHP system causes ground heat accumulation, which reduces the system’s COP and increases energy consumption. The study also revealed that compared with the GSHP system, the WSHP system has a more stable long-term performance for buildings in Suzhou.


Author(s):  
Bing Wei ◽  
Huayi Yang

Nowadays the energy crisis has been more and more severe all over the world. In China there is enormous energy source, but due to the large number of population, the average possession of the total energy is lower, and the energy supply is relatively less. Enormous energy consumption of air conditioning systems in the residential buildings makes the energy conservation more important. The residential central air conditioning systems are being widely used due to its advantages of easy control and low operating cost. But there are still many problems to be resolved, of which the energy consumption of the residential central air-conditioning systems is a hot issue. The main cold and heat sources for residential central air conditioning systems are air-cooled heat pump unit, household gas air conditioning unit, air-cooled chiller unit/gas-fired boiler and water loop heat pump unit. The terminal facilities suited for the anterior three units are the fan coil units, and the terminal of the last water loop heat pump unit is normally indoor unit. The combined utilization of the heat and cold source units with their terminal units keep the indoor environment in desired state all the year. In this paper, based on an actual example, the basic principles of four systems mentioned above are outlined and analyzed, and four schemes are compared. By using the method of equivalent weight full load operation time, the annual energy consumptions of the four schemes are calculated and analyzed. Comparing the annual primary energy consumption of four schemes, the following conclusions can be drawn: in the case studied, the energy consumption of the household gas-fired air conditioning unit with fan coil system is the maximum, the consumption of the air-cooled chiller unit/gas-fired boiler with fan coil system is the next, then is the air-cooled heat pump with fan coil system, and that of the water loop heat pump system is the minimum. It can be observed that the water loop heat pump system is the optimal one and is the best on energy conservation. Through the study of this paper, the minimum energy consumption system is chosen so as to give the references for the energy savings of air-conditioning systems in the practice.


Sign in / Sign up

Export Citation Format

Share Document