scholarly journals Numerical Study on the Performance of a Cogeneration System of Solid Oxide Fuel Cell Based on Biomass Gasification

2021 ◽  
Vol 9 ◽  
Author(s):  
Zheng Dang ◽  
Zhaoyi Jiang ◽  
Jinyan Ma ◽  
Xin Shen ◽  
Guang Xi

In order to solve the environmental pollution problem caused by winter heating of rural residential building in northern of China, in this paper a biomass gasification (BG)-solid oxide fuel cell (SOFC) combined heat and power (CHP) system has been establishedand numerically investigated. Taking a rural village around Xi’an which is an ancient city and located at central of northern China as the study object, according to heat and electricity output of the system and the heating and electrical load characteristics of the residential building of village, the energy saving ratio and economical efficiency of the CHP system under three different operation schemes compared with the traditional energy system have been analyzed. The results show that the operation scheme for heating designated rooms in rural buildings and meeting the average heat demand of users is the most energy-efficient and economical way. The primary energy saving rate and annual cost saving rate can reach 18.0% and 10.3%, respectively. When the user’s heat and power load demand is clear, the closer the system’s output heat and power ratio to the user’s heat and power load ratio, the more significant the system’s energy saving effect.

2015 ◽  
Vol 81 ◽  
pp. 400-410 ◽  
Author(s):  
Junxi Jia ◽  
Abuliti Abudula ◽  
Liming Wei ◽  
Baozhi Sun ◽  
Yue Shi

2019 ◽  
Vol 91 (1) ◽  
pp. 391-402
Author(s):  
Shimpei Yamaguchi ◽  
Tomoatsu Ozaki ◽  
Takeshi Suyama ◽  
Hiroki Muroyama ◽  
Toshiaki Matsui ◽  
...  

2014 ◽  
Author(s):  
Masoud Rokni

Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissions and plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants configurations are compared with each other. Technoeconomy is used when calculating the cost if the plants. It is found that when a solid oxide fuel cell plant is combined with a gas turbine cycle then the plant efficiency will be the highest one while if a biomass gasification plant is integrated with these hybrid cycles then integrated biomass gasification with solid oxide fuel cell and steam cycle will have the highest plant efficiency. The cost of solid oxide fuel cell with steam plant is found to be the lowest one with a value of about 1030$/kW.


AIMS Energy ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 934-990
Author(s):  
O. Corigliano ◽  
◽  
G. De Lorenzo ◽  
P. Fragiacomo

<abstract> <p>The paper presents a wide and deep analysis of the techno-energy and economic performance of a Solid Oxide Fuel Cell/Gas Turbine hybrid system fed by gas at different compositions of H<sub>2</sub>, CO, H<sub>2</sub>O, CO<sub>2</sub>, CH<sub>4, </sub> and N<sub>2</sub>. The layout of the system accounts for pressurizing of entering fluids, heat up to the set Solid Oxide Fuel Cell inlet conditions, Solid Oxide Fuel Cell thermo-electrochemical processing, Solid Oxide Fuel Cell—exhaust fluids combustion, turbo-expansion after heat up, and final recovery unit for cogeneration purposes.</p> <p>An ad hoc numerical modeling is developed and then run in a Matlab calculation environment. The influence on the system is evaluated by investigating the change of the fuel composition, and by managing the main operating parameters such as pressure and the fuel utilization factor. The analysis reports on the specific mass flowrates necessary to the purpose required, by assessing the SOFC outlet molar compositions, specific energies (work) at main system elements, specific thermal energies at main system elements, energy and technical performance for Solid Oxide Fuel Cell energy unit; the performance such as electric and thermal efficiency, temperatures at main system elements. A final sensitivity analysis on the performance, Levelized Cost of Energy and Primary Energy Saving, is made for completion. The first simulation campaign is carried out on a variable anodic mixture composed of H<sub>2</sub>, CO, H<sub>2</sub>O, considering the H<sub>2</sub>/CO ratio variable within the range 0.5-14, and H<sub>2</sub>O molar fraction variable in the range 0.1-0.4; used to approach a possible syngas in which they are significantly high compared to other possible compounds. While other simulation campaigns are conducted on real syngases, produced by biomass gasification. The overall Solid Oxide Fuel Cell/Gas Turbine system showed a very promising electric efficiency, ranging from 53 to 63%, a thermal efficiency of about 37%, an LCOE ranging from 0.09 to 0.14 $·kWh<sup>-1</sup>, and a Primary Energy Saving in the range of 33-52%, which resulted to be highly affected by the H<sub>2</sub>/CO ratio.</p> <p>Also, real syngases at high H<sub>2</sub>/CO ratio are noticed as the highest quality, revealing electric efficiency higher than 60%. Syngases with methane presence also revealed good performance, according to the fuel processing of methane itself to hydrogen. Low-quality syngases revealed electric efficiencies of about 51%. Levelized Cost of Energy varied from 0.09 (for high-quality gas) to 0.19 (for low-quality gas) $·kWh<sup>-1</sup>, while Primary Energy Saving ranged from 44 to 52%.</p> </abstract>


Sign in / Sign up

Export Citation Format

Share Document