gasification plant
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 33)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
С.В. Бородкин ◽  
И.Л. Батаронов ◽  
А.В. Иванов ◽  
В.И. Ряжских

На основе одномерной дифференциальной модели теплообмена в газификаторе закрытого типа сформулирована задача параметрической идентификации модели на основе измерений на штатном оборудовании промышленной газификационной установки. Модель включает в себя дополнительное интегральное условие и самосогласованно определяемую подвижную границу, отделяющую зону обледенения трубки испарителя. С применением метода сглаживания особенности разработан алгоритм итерационного решения уравнений модели, использующий метод сквозного счета для решения уравнения переноса на одной итерации. Для параметрической идентификации модели использована смешанная стратегия. Часть идентифицируемых параметров (теплоемкость испарителя, мощность нагревателя, массовая производительность насоса, коэффициент теплоотдачи в окружающую среду) определялась на основе специально организованных измерений: нагрева испарителя без прокачки сверхкритического флюида, газификации в условиях теплоизолированности корпуса испарителя, газификации в стационарном режиме работы. Остальные параметры (коэффициенты теплоотдачи в теплоноситель и сверхкритический флюид) идентифицировались в пассивных измерениях с различными производительностями насоса. Отмечено, что ввиду плохой обусловленности задачи и ограниченности вариаций коэффициентов применение регрессионных методов в данной модели неэффективно. На основе метода стрельбы разработан способ идентификации, заключающийся в определении параметров по измерениям с предельными производительностями с построением функциональной связи между идентифицируемыми параметрами, с последующей верификацией на промежуточных измерениях. Метод апробирован на примере штатной газификационной установки СГУ-7КМ-У We formulated the problem of parametric identification of the model based on measurements on the standard equipment of an industrial gasification plant on the basis of a one-dimensional differential model of heat transfer in a closed-type gasifier. The model includes an additional integral condition and a self-consistently defined movable boundary separating the icing zone of the evaporator tube. Using the method of smoothing the singularity, we developed an algorithm for iterative solution of the model equations, using the end-to-end counting method to solve the transfer equation in one iteration. We used a mixed strategy for parametric identification of the model. We determined some of the identified parameters (evaporator heat capacity, heater power, mass pump capacity, heat transfer coefficient to the environment) on the basis of specially organized measurements: heating of the evaporator without pumping supercritical fluid, gasification under conditions of thermal insulation of the evaporator body, gasification in stationary operation. We identified the remaining parameters (heat transfer coefficients to the coolant and supercritical fluid) in passive measurements with different pump capacities. We noted that due to the poor conditionality of the problem and the limited variation of coefficients, the use of regression methods in this model is ineffective. Based on the ballistic method, we developed an identification method, which consists in determining parameters by measurements with marginal performance with the construction of a functional relationship between the identified parameters, followed by verification on intermediate measurements. We tested the method on the example of a standard gasification plant SGU-7KM-U


2021 ◽  
Vol 882 (1) ◽  
pp. 012080
Author(s):  
R Tetrisyanda ◽  
A Wiguno ◽  
G Wibawa

Abstract The abundant amount of coal reserves in Indonesia has a great potential to be used as a source of raw materials and energy for industry. However, the use of coal in meeting domestic needs is not optimally utilized, as indicated by the high number of raw coal exports abroad. In addition, the low quality of coal is also one of the reasons for its low utilization. The processing of coal into synthetic gas (syngas) opens the way downstream of coal-derived chemical products, namely dimethyl ether (DME), methanol, ammonia and synthetic natural gas (SNG). The integration of various chemical products is expected to maximize the potential of Indonesian coal. The plant capacity was 11540 tpd (tons per day) low-rank wet coal producing DME 2000 tpd, methanol 2500 tpd, ammonia 600 tpd and SNG 25 MMSCFD (million standard cubic feet per day). These chemical production technologies have been proven and are commercially available. Based on the results of the process and economic simulations, it is found that the establishment of a coal gasification plant into various integrated chemicals is feasible to be established with an internal rate of return (IRR) of 12.46% and a payback period of 6 years and 5 months.


Detritus ◽  
2021 ◽  
pp. 63-74
Author(s):  
Marek Dudynski

We present an analysis of influence of biomass pre-treatment and change of gasifying agent on the performance of an oxygen-steam-air updraft gasification plant and a technological process capable of delivering high quality producer gas. The results of these changes on composition of tar collected with absorption type gas purification unit, designed for dust and tar removal are also reported.


2021 ◽  
Vol 131 ◽  
pp. 148-162
Author(s):  
Octávio Alves ◽  
Luís Calado ◽  
Roberta M. Panizio ◽  
Margarida Gonçalves ◽  
Eliseu Monteiro ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 660
Author(s):  
Roque Aguado ◽  
David Vera ◽  
Diego A. López-García ◽  
Juan P. Torreglosa ◽  
Francisco Jurado

This research work presents a techno-economic analysis of a biomass gasification plant fueled with residues from the olive oil and almond industries for combined heat and power generation in the agrifood sector. The experimental plant consists of a downdraft fixed bed gasifier, a producer gas cleaning and cooling system and a spark-ignition engine–generator set as a power generation unit, which generates about 10–12 kW of rated electric power. With an average consumption between 13–14 kg/h of exhausted olive pomace pellets as feedstock, the producer gas volumetric flow rate was 31 Nm3/h (vol. %: 19.2 H2, 12.9 CO, 1.9 CH4, 19.2 CO2, 46.7 N2). The average cold gas efficiency was nearly 63%. This work also addresses the characterization and potential application of the carbonaceous solid residue (biochar), discharged from the gasifier at 1.7 kg/h. Finally, an economic feasibility analysis was developed, wherein the payback period ranges between 5–9 years.


2021 ◽  
Vol 239 ◽  
pp. 00007
Author(s):  
Carlos Vargas-Salgado ◽  
Lina Montuori ◽  
Manuel Alcázar-Ortega

Despite being a renewable source, biomass as fuel for power generation is still not completely exploited. In biomass gasification plants, control operations are crucial for the proper management of the plant. This paper describes the results of a regulation control applied to an experimental biomass bubbling fluidized bed (BFB) gasification plant. The aim of implementing the system is to improve the biomass gasification process, increasing the efficiency and ensuring the safety in the plant operation. The equivalence ratio (ER) is one of the main parameters in a gasification process. To improve the ER, the airflow input is controlled, measuring the air velocity through an anemometer. On the other hand, the biomass flow is controlled modifying the speed of the screw conveyor using an inverter for regulating the frequency of its electric motor. A PLC is used for programming the instructions to implement control functions and to store the data given by the measurement devices. Once implemented the control system, the biomass gasification plant could work either; manually o automatically, allowing to adjust ER, increasing efficiency of the process. Finally, some tests are done to validate the control system, using the acquired data to improve the process.


2021 ◽  
Vol 247 ◽  
pp. 01043
Author(s):  
Anastasiia Druzhinina ◽  
Antonina Golubeva ◽  
Eleonora Zhuravleva ◽  
Ekaterina Makarenko ◽  
Anastasiia Nedomovnaya

Humanity knows three ways to deal with waste: incineration, burial (landfills) and recycling. All the methods, except reuse and recycle, destroy nature and are dangerous for ecology and human health exactly. Each year Russians produce about 50 million tons solid waste, the most part of which goes to the landfills. National green projects are aimed to create visible eco-friendly system by awarding greenwashing projects with grants: landfills with sorting system, sorting centres without recycling facilities. Therefore, this study is aimed to discover recycling practices execute in Russia and suggest the project of gasification waste plant.


Sign in / Sign up

Export Citation Format

Share Document