scholarly journals P2H Modeling and Operation in the Microgrid Under Coupled Electricity–Hydrogen Markets

2021 ◽  
Vol 9 ◽  
Author(s):  
Hongxin Liu ◽  
Yueyao Wang ◽  
Feifei Xu ◽  
Mengkai Wu ◽  
Kai Jiang ◽  
...  

The uncertainty and volatility of wind power have led to large-scale wind curtailment during grid connections. The adoption of power-to-hydrogen (P2H) system in a microgrid (MG) can mitigate the renewable curtailment by hydrogen conversion and storage. This paper conducts unified modeling for different types of P2H systems and considers the multi-energy trading in a hydrogen-coupled power market. The proposed bi-level equilibrium model is beneficial to minimize the energy cost of microgrids. Firstly, a microgrid operation model applied to different P2H systems including an alkaline electrolysis cell (AEC), a proton exchange membrane electrolysis cell (PEMEC), or a solid oxide electrolysis cell (SOEC) is proposed at the upper level. Secondly, an electricity market–clearing model and a hydrogen market model are constructed at the lower level. Then, the diagonalization algorithm is adopted to solve the multi-market equilibrium problem. Finally, case studies based on an IEEE 14-bus system are conducted to validate the proposed model, and the results show that the microgrid with a P2H system could gain more profits and help increase the renewable penetration.

2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Hamza Ahmed ◽  
Abdullatif Musa

The proton exchange membrane fuel cell (PEMFC) is regarded as the most competitive candidate to replace the traditional forms of power conversion due to its prominent advantages. The hydrogen gas is used as a main fuel in the fuel cells. The hydrogen gas can be produced through the use of solar energy which is connected to alkaline electrolysis cell (AEC) by water splitting process known as electrolysis. In this paper,a thermodynamic model is presented to design and optimize a direct coupling system (DCS) that has two cells, an alkaline electrolysis cell (AEC) and a proton exchange membrane fuel cell (PEMFC). Moreover, the performances of the direct coupling system (DCS) are evaluated using numerical model that are built in Engineering Equations solver software. So several parameters concerning the direct coupling system (DCS) such as the voltage of system, the hydrogen rate production from electrolysis which injects to fuel cell and producing power of the full system. The simulations result show that, the voltage of alkaline electrolysis is higher than the fuel cell. The water management process in the whole system is considered satisfactory due to the low value of the losses in the amount of water. The water which is generated from the fuel cell is injected to electrolysis cell, so the electrolysis cell does not need to inject large quantities of water. The efficiency of the system is about 34.85% and this efficiency is satisfactory compared to other systems of power generation as this percentage is due to clean, renewable and environmentally friendly fuel.


RSC Advances ◽  
2020 ◽  
Vol 10 (61) ◽  
pp. 37429-37438
Author(s):  
Immanuel Vincent ◽  
Eun-Chong Lee ◽  
Hyung-Man Kim

Anion exchange membrane (AEM) electrolysis eradicates platinum group metal electrocatalysts and diaphragms and is used in conventional proton exchange membrane (PEM) electrolysis and alkaline electrolysis.


2019 ◽  
Vol 116 (11) ◽  
pp. 4899-4904 ◽  
Author(s):  
Michael M. Whiston ◽  
Inês L. Azevedo ◽  
Shawn Litster ◽  
Kate S. Whitefoot ◽  
Constantine Samaras ◽  
...  

Despite decades of development, proton exchange membrane fuel cells (PEMFCs) still lack wide market acceptance in vehicles. To understand the expected trajectories of PEMFC attributes that influence adoption, we conducted an expert elicitation assessment of the current and expected future cost and performance of automotive PEMFCs. We elicited 39 experts’ assessments of PEMFC system cost, stack durability, and stack power density under a hypothetical, large-scale production scenario. Experts assessed the median 2017 automotive cost to be $75/kW, stack durability to be 4,000 hours, and stack power density to be 2.5 kW/L. However, experts ranged widely in their assessments. Experts’ 2017 best cost assessments ranged from $40 to $500/kW, durability assessments ranged from 1,200 to 12,000 hours, and power density assessments ranged from 0.5 to 4 kW/L. Most respondents expected the 2020 cost to fall short of the 2020 target of the US Department of Energy (DOE). However, most respondents anticipated that the DOE’s ultimate target of $30/kW would be met by 2050 and a power density of 3 kW/L would be achieved by 2035. Fifteen experts thought that the DOE’s ultimate durability target of 8,000 hours would be met by 2050. In general, experts identified high Pt group metal loading as the most significant barrier to reducing cost. Recommended research and development (R&D) funding was allocated to “catalysts and electrodes,” followed in decreasing amount by “fuel cell performance and durability,” “membranes and electrolytes,” and “testing and technical assessment.” Our results could be used to inform public and private R&D decisions and technology roadmaps.


2021 ◽  
Author(s):  
Sumit Sood ◽  
Om Prakash ◽  
Mahdi Boukerdja ◽  
Belkacem Ould-Bouamama ◽  
Jean-Yves Dieulot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document