scholarly journals Genetic Structure and Gene Flow of Moss Sanionia uncinata (Hedw.) Loeske in Maritime Antarctica and Southern-Patagonia

Author(s):  
Ingrid Hebel ◽  
Maria Carmen Dacasa Rüdinger ◽  
Ricardo A. Jaña ◽  
Joaquin Bastias
2021 ◽  
Vol 2 ◽  
Author(s):  
Ingrid Hebel ◽  
Inti Gonzalez ◽  
Ricardo Jaña

The Antarctic Specially Protected Areas (ASPAs) are zones with restricted access to protect outstanding environmental, scientific, historic, aesthetic, or wilderness values adopted inside the Antarctic Treaty System. Meanwhile, in southern Patagonia, conservation initiatives are implemented by the state of Chile and private entities. However, both are considered unrepresentative. Our work evaluates the representativeness of the in situ conservation through a genetic approach of the moss Sanionia uncinata (Hedw.) Loeske among protected and neighboring free access areas in Maritime Antarctica and southern Patagonia. We discuss observed presence with both current and reconstructed past potential niche distributions (11 and 6 ka BP) in the Fildes Peninsula on King George Island. Results showed occurrence of several spatially genetic subpopulations distributed inside and among ASPA and free access sites. Some free access sites showed a higher amount of polymorphism compared with ASPA, having ancestry in populations developed in those places since 6 ka BP. The different spatial and temporal hierarchies in the analysis suggest that places for conservation of this species in Maritime Antarctica are not well-represented, and that some free access areas should be considered. This work represents a powerful multidisciplinary approach and a great challenge for decision-makers to improve the management plans and the sustainable development in Antarctica.


Genetics ◽  
1997 ◽  
Vol 147 (2) ◽  
pp. 643-655 ◽  
Author(s):  
Kenneth G Ross ◽  
Michael J B Krieger ◽  
D DeWayne Shoemaker ◽  
Edward L Vargo ◽  
Laurent Keller

We describe genetic structure at various scales in native populations of the fire ant Solenopsis invicta using two classes of nuclear markers, allozymes and microsatellites, and markers of the mitochondrial genome. Strong structure was found at the nest level in both the monogyne (single queen) and polygyne (multiple queen) social forms using allozymes. Weak but significant microgeographic structure was detected above the nest level in polygyne populations but not in monogyne populations using both classes of nuclear markers. Pronounced mitochondrial DNA (mtDNA) differentiation was evident also at this level in the polygyne form only. These microgeographic patterns are expected because polygyny in ants is associated with restricted local gene flow due mainly to limited vagility of queens. Weak but significant nuclear differentiation was detected between sympatric social forms, and strong mtDNA differentiation also was found at this level. Thus, queens of each form seem unable to establish themselves in nests of the alternate type, and some degree of assortative mating by form may exist as well. Strong differentiation was found between the two study regions usinga all three sets of markers. Phylogeographic analyses of the mtDNA suggest that recent limitations on gene flow rather than longstanding barriers to dispersal are responsible for this large-scale structure.


Genetics ◽  
1997 ◽  
Vol 147 (4) ◽  
pp. 1843-1854 ◽  
Author(s):  
Nancy N FitzSimmons ◽  
Craig Moritz ◽  
Colin J Limpus ◽  
Lisa Pope ◽  
Robert Prince

Abstract The genetic structure of green turtle (Chelonia mydas) rookeries located around the Australian coast was assessed by (1) comparing the structure found within and among geographic regions, (2) comparing microsatellite loci vs. restriction fragment length polymorphism analyses of anonymous single copy nuclear DNA (ascnDNA) loci, and (3) comparing the structure found at nuclear DNA markers to that of previously analyzed mitochondrial (mtDNA) control region sequences. Significant genetic structure was observed over all regions at both sets of nuclear markers, though the microsatellite data provided greater resolution in identifying significant genetic differences in pairwise tests between regions. Inferences about population structure and migration rates from the microsatellite data varied depending on whether statistics were based on the stepwise mutation or infinite allele model, with the latter being more congruent with geography. Estimated rates of gene flow were generally higher than expected for nuclear DNA (nDNA) in comparison to mtDNA, and this difference was most pronounced in comparisons between the northern and southern Great Barrier Reef (GBR). The genetic data combined with results from physical tagging studies indicate that the lack of nuclear gene divergence through the GBR is likely due to the migration of sGBR turtles through the courtship area of the nGBR population, rather than male-biased dispersal. This example highlights the value of combining comparative studies of molecular variation with ecological data to infer population processes.


2006 ◽  
Vol 7 (2) ◽  
pp. 309-313 ◽  
Author(s):  
Nusha Keyghobadi ◽  
Katherine P. Unger ◽  
Jason D. Weintraub ◽  
Dina M. Fonseca

2011 ◽  
Vol 158 (4) ◽  
pp. 871-882 ◽  
Author(s):  
Norio Tanaka ◽  
Teruko Demise ◽  
Mitsuhiro Ishii ◽  
Yasumasa Shoji ◽  
Masahiro Nakaoka

2015 ◽  
Vol 115 (4) ◽  
pp. 683-692 ◽  
Author(s):  
B. Bertolasi ◽  
C. Leonarduzzi ◽  
A. Piotti ◽  
S. Leonardi ◽  
L. Zago ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document