scholarly journals Springtime Drought Shifts Carbon Partitioning of Recent Photosynthates in 10-Year Old Picea mariana Trees, Causing Restricted Canopy Development

2021 ◽  
Vol 3 ◽  
Author(s):  
Anna M. Jensen ◽  
Diana Eckert ◽  
Kelsey R. Carter ◽  
Maria Persson ◽  
Jeffrey M. Warren

Springtime bud-break and shoot development induces substantial carbon (C) costs in trees. Drought stress during shoot development can impede C uptake and translocation. This is therefore a channel through which water shortage can lead to restricted shoot expansion and physiological capacity, which in turn may impact annual canopy C uptake. We studied effects of drought and re-hydration on early season shoot development, C uptake and partitioning in five individual 10-year old Picea mariana [black spruce] trees to identify and quantify dynamics of key morphological/physiological processes. Trees were subjected to one of two treatments: (i) well-watered control or (ii) drought and rehydration. We monitored changes in morphological [shoot volume, leaf mass area (LMA)], biochemical [osmolality, non-structural carbohydrates (NSC)] and physiological [rates of respiration (Rd) and light-saturated photosynthesis (Asat)] processes during shoot development. Further, to study functional compartmentalization and use of new assimilates, we 13C-pulse labeled shoots at multiple development stages, and measured isotopic signatures of leaf respiration, NSC pools and structural biomass. Shoot water potential dropped to a minimum of −2.5 MPa in shoots on the droughted trees. Development of the photosynthetic apparatus was delayed, as shoots on well-watered trees broke-even 14 days prior to shoots from trees exposed to water deficit. Rd decreased with shoot maturation as growth respiration declined, and was lower in shoots exposed to drought. We found that shoot development was delayed by drought, and while rehydration resulted in recovery of Asat to similar levels as shoots on the well-watered trees, shoot volume remained lower. Water deficit during shoot expansion resulted in longer, yet more compact (i.e., with greater LMA) shoots with greater needle osmolality. The 12C:13C isotopic patterns indicated that internal C partitioning and use was dependent on foliar developmental and hydration status. Shoots on drought-stressed trees prioritized allocating newly fixed C to respiration over structural components. In conclusion, temporary water deficit delayed new shoot development and resulted in greater LMA in black spruce. Since evergreen species such as black spruce retain active foliage for multiple years, impacts of early season drought on net primary productivity could be carried forward into subsequent years.

Botany ◽  
2011 ◽  
Vol 89 (2) ◽  
pp. 133-140 ◽  
Author(s):  
Marios Viktora ◽  
Rodney A. Savidge ◽  
Om P. Rajora

Black spruce (Picea mariana) reproduces sexually from seeds and asexually by layering. There is a prevalent concept that clonal reproduction maintains populations of this species in the subarctic and arctic regions. We used microsatellite DNA markers of the nuclear genome to investigate the genetic structure of montane and subalpine black spruce populations from the Western Yukon Plateau in relation to this concept. Sixty individual trees at a minimum distance of 4 m from each other were sampled from each of four populations and individual trees were genotyped for eight microsatellite loci. Each of the 60 individuals from three montane pure black spruce populations growing on flat terrain at relatively low elevations had unique multilocus genotypes, indicating an absence of clonal structure in those populations. However, in an anthropologically undisturbed climax white spruce-dominated subalpine black spruce population on a northwest slope near Mount Nansen, the majority of the sampled individuals belonged to eight genetically distinct clones (genets). Clone size differed by altitude, the dominant genet being nearest the timberline–tundra ecotone. The results indicate that black spruce reproduction is variable and adaptive, being primarily sexual in flat-terrain montane populations previously subjected to fire disturbance, but mixed vegetative–sexual in the anthropogenically undisturbed subalpine population. This study is the first to employ molecular markers a priori to examine the mode of reproduction in natural black spruce populations.


1978 ◽  
Vol 54 (6) ◽  
pp. 296-297 ◽  
Author(s):  
Douglas A. Mead

Height growth of eastern larch (Larix laricina (Du Roi) K. Koch) and black spruce (Picea mariana (Mill.) B.S.P.) was determined using standard stem analysis methods on trees from two sites in northwestern Ontario. The data were obtained from mixed larch-spruce stands which were relatively undisturbed. The larch exhibited substantially better height growth than the spruce through age 65.


1988 ◽  
Vol 120 (12) ◽  
pp. 1113-1121 ◽  
Author(s):  
Y.H. Prévost ◽  
J.E. Laing ◽  
V.F. Haavisto

AbstractThe seasonal damage to female reproductive structures (buds, flowers, and cones) of black spruce, Picea mariana (Mill.) B.S.P., was assessed during 1983 and 1984. Nineteen insects (five Orders) and the red squirrel, Tamiasciurus hudsonicus (Erxleben), were found feeding on these reproductive structures. Collectively, these organisms damaged 88.9 and 53.5% of the cones in 1983 and 1984, respectively. In the 2 years, Lepidoptera damaged 61.8% of the cones in 1983 and 44.4% of the cones in 1984. The spruce budworm, Choristoneura fumiferana (Clem.), and the spruce coneworm, Dioryctria reniculelloides Mut. and Mun., were the most important pests. Cones damaged by Lepidoptera could be classed into three categories: (a) severe, yielding no seeds; (b) moderate, yielding 22.3 seeds per cone; and (c) light, yielding 37.5 seeds per cone. Undamaged cones yielded on average 39.9 seeds per cone. Red squirrels removed 18.8% of the cones in 1983 and none in 1984. The spruce cone axis midge, Dasineura rachiphaga Tripp, and the spruce cone maggot, Lasiomma anthracinum (Czerny), caused minor damage in both years. Feeding by spruce cone axis midge did not reduce cone growth significantly or the number of viable seeds per cone, but feeding by the spruce cone maggot did. During both years new damage by insects to the female reproductive structures of the experimental trees was not observed after mid-July. In 1983 damage by red squirrels occurred from early to late September. In 1984 damage to cones on trees treated with dimethoate was 15.6% compared with 53.5% for untreated trees, without an increase in the number of aborted cones.


2015 ◽  
Vol 49 (3) ◽  
pp. 457-473 ◽  
Author(s):  
Thierry Koumbi-Mounanga ◽  
Paul I. Morris ◽  
Myung J. Lee ◽  
Nasmus M. Saadat ◽  
Brigitte Leblon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document